SKALARNE I VEKTORSKE FUNKCIJE VIŠE VARIJABLI:

SKALARNE:

\[y = f(x_1, x_2, \ldots, x_m) \]

PODOČJE ORFINICIJE \(\subset \mathbb{R}^m \) (PODOČJE ARGUMENTA) \(\nearrow \)

PODOČJE VRJEDNOSTI = \(\mathbb{R} \)

OČISTI ZAPIS: \(y = f(x) \)
\[y = x_1 \cos x_2 + x_3^2 \]

\[x_1 = x, \quad x_2 = y, \quad x_3 = z \]

\[y = \bar{w}_z \]

\[w = x \cos y + z^3 \]

\[w(3, 0, 12) = 3 \cos 0 + 2^3 = 3 \cdot 1 + 8 = 11 \]

\[w(2, 3, 0) = 2 \cos 3 + 0^3 = 2 \cos 3 \approx -0.99 \]

\[\approx -1.98 \]

Proof:

\[\text{dom} y = \mathbb{R}^m \]

\[\text{range} y = \mathbb{R}^m \]
ZAD 1: Izračunaj vrijednost funkcije u točki:

a) \(w = x_1 \cdot x_2 + m \cdot x_3 \)
 \(u: T_1(-2, 3, 1) \)
 \(T_2(1, 0, c) \)

b) \(z = x^2 + 3 e^y \)
 \(u: T_1(-1, 4) \quad T_2(2, -1) \)

c) \(y = \sqrt{u^2 + 2y \cdot w} \)
 \(u: T_1(-2, 1, 6) \)
 \(T_2(-1, 2, 2) \)
2b

a) \[w(-2, 3, 1) = -6 \]
 \[w(1, 0, e) = 1 \]

b) \[z(-1, 4) = 1 + 3 \cdot e^4 \]
 \[z(2, -1) = 4 + 3 \cdot e^{-1} \]

c) \[y(-2, 1, 5) = 4 \]
 \[y(-1, 2, 2) = 3 \]
$z = \sqrt{xy}$

$z(1,4) = \sqrt{1 \cdot 4} = 2$

$z(-3,7) = \sqrt{-3 \cdot 7} = \sqrt{-21} \text{ NIKAKO NEDEFIN.}$

Područje definicije je skup svih (x,y) za koja je $xy \geq 0$.

Domin cije $1 \leq KMM$.

(l. koord. osinu A)
Zad: Odredi područje definicije: (Slika!)

a) \(z = x + \sqrt{y} \)
b) \(z = \sqrt[4]{-x^2 - y^2} \)

c) \(z = \frac{1}{\sqrt{x+y}} + \frac{1}{\sqrt{x-y}} \)

d) \(z = \ln (x^2 + y) \)

e) \(z = \arcsin \left(\frac{x}{y^2} \right) \)
a) \(y \geq 0 \)

b) \(x^2 + y^2 \leq 4 \)
c)

\[y > -x \]
\[y < x \]
\[y = x \]
\[y = -x \]

\[y > -x^2 \]

\[(3c) \]
e) $x \leq y^2$ \\
$-y^2 \leq x$ \\
$(-y^2 \leq x \leq y^2)$
Pr. 3 PRIMJENJA:

$T(x, y, z)$ temperatura tokha

dom $T = $ atmosfera

Još neke skalarne funkcije:

PRITISAK (ATROSFERSKI, U VODI),)

POTENCIJAL (ELIKTROST, GRAVITACIJSKI, ...)

GUSTOĆA (ŽENGLE, MATERIJAL,)
VEKTORSKE:

\((y_1, y_2) = f(x_1, x_2, x_3)\)

VEKTORSKA RAID REZL. VARIJ.

Potrebno je shvatiti kao više skalaranih:

\[y_1 = f_1(x_1, x_2, x_3)\]
\[y_2 = f_2(x_1, x_2, x_3)\]

Čestiji zapis:

\[\overrightarrow{y} = f(x)\]
\(Pm. 4 \)

\[w = xy + t \]
\[v = \cos(xy) + e^t \]

\[f_j: (w, v) = (xy + t, \cos(xy) + e^t) \]

\[(w, v)(1, 0, 2) = (1 \cdot 0 + 2, \cos 1 \cdot 0 + e^2) \]
\[= (2, 1 + e^2) \]
\[\approx (2, 8.83) \]

\(Pm. 5 \)

PRAJRNŽE

\[\vec{V}(x, y, t) = Bršina fluida u cijevi (Ponat.OEF.) \]

POGLE SILA (ELEKTROST., GRAVIT.)
IZRAČUNAJ:

a) \(r = \sqrt{x^2 + y^2} \)
\(\varphi = \sin(x \cdot y) \)
\((r, \varphi) = (\sqrt{x^2 + y^2}, \sin(x \cdot y))\)

\(\mathbf{u} : \quad T_1(1, 0), \quad T_2(0, -1), \quad T_3(1, -1) \)

b) \(u = x + y + z \)
\(v = 2x + 1 \)
\((u, v) = (x + y + z, 2x + 1)\)

\(\mathbf{u} : \quad T_1(1, 2, 3), \quad T_2(-1, 0, 2) \)
\[a) \quad (r, \varphi) (1, 0) = (1, 0) \\
(\rho, \varphi) (0, -1) = (1, 0) \\
(\rho, \varphi) (1, -1) = (\sqrt{2}, -\sin 1) \]

\[b) \quad (u, v) (1, 2, 3) = (6, 3) \\
(u, v) (-1, 0, 2) = (1, -1) \]
Bavitić često se skalar-nim funkcijama visiših varijabli.
(Vektorske su viših skalarnih)
Kraće često ih žvati funkcijama više varijabli.

Graf funkcije 1 varijable

\[y = f(x) \]

Krivulja
GRAF FUNKC. 2 VARIJABLE

\[z = f(x, y) \]

GRAF FUNKC. 3 VARIJABLE

\[w = f(x, y, t) \]

NEHANO
4. Dina za prikaži
VR1.) n.
ALTERNATIVNI PRIKAZ

"NIVO SKUPOVI"

ZA FUNKC. 2 VARIJABLE:

\[z = f(x, y) \]

\[\{ (x, y) : f(x, y) = c \} \]

Primer 6

\[z = x^2 + y^2 \]

Graf

NIVO KRIJVR: KRIJVR NIVOA C

Graf

G
ZAD

SKICIRAJ NIVO KRIVULJE

FUNKCIJA:

a) \(z = 2x + 3y \)

b) \(z = 2x^2 + 3y^2 \)

c) \(z = x^2 + y \)

d) \(z = x^2 - y^2 \)
a) Familija pravaca $2x + 3y = c$.

$y = -\frac{2}{3}x + 2$

$y = -\frac{2}{3}x$

$y = -\frac{2}{3}x - 2$
b) Familija elipsi $2x^2 + 3y^2 = c$.
c) Family of parabolas $x^2 + y = c$.

\[gd \]
d) Familija hiperbola \(x^2 - y^2 = c. \)
2A FUNKCE 3 VARIÁLNÍ

\[w = f(x, y, z) \]

\[\exists (x, y, z) : f(x, y, z) = x^2 \]

PLOHA

\[VINO PLOHA: \]

\[x^2 + y^2 + z^2 = c \]

GRAF:

NERADO
4.019.