ŽIVOT I DJELO KURTUSA GÖDELA

ZVONIMIR ŠIKIĆ, Zagreb

Kurt Friedrich Gödel1 rođen je 28. travnja 1906, kao drugi sin Rudolfa i Marianne (Handschu) Gödel, u Brünnu, središtu Austro-Ugarske pokrajine Moravije. Gödelov otac, koji je pripadao ovećoj njemačkoj gorovnoj manjini, došao je u Brňnu iz Beča. Tu je s vremenom postao direktor i djelomični vlasnik najvažnijih tekstilnih tvrtki što je Gödelovima osiguravalo siguran i ugodan život.

Od 1916. do 1924. godine Gödel je pohađao Deutsches Statts-Realgymnasium. Iz svih je predmeta imao odlične ocjene, a osobito se ističao u matematici, jezicima i teologiji.

Hans Hahn uskoro je postao Gödelov glavni učitelj. Bio je to matematičar nove generacije (koji se vratio u Austriju, napustivši položaj u Bonnu), zainteresiran za modernu analizu, skupovno-teorijsku topologiju, logiku, osnove matematike i filozofiju znanosti. Upravo je Hahn uveo Gödela u grupu filozofa okupljenih oko Moritza Schlicka, koji je držao katedru za filozofiju induktivnih znanosti (katedru su dotad držali Ernst Mach i Ludwig Boltzmann). Schlickova je grupa kasnije prozvana „Bečkim krugem“ (*Wiener Kreis*) i počela se identificirati s filozofskom doktrinom nazvanom logički pozitivizam ili logički empirizam. Zadatak te škole bila je analiza znanja u logičkim i empiričkim terminima, s težnjom da se filozofija učini znanstvenom, oslobađajući je metafizičkih spekulacija. Gödel je sudjelovao na sastancima Kruga od 1926. do 1928. godine, da bi se sljedećih godina odvojio od njega, održavajući stalne veze s pojedinim članovima, osobito s Rudolfom Carnapom. Glavni razlog odvajanja bijaše to što je Gödel s vremenom razvio vlastite filozofske pogledove dijametralno suprotno pogledima logičkih pozitivista.

Grundzüge su kao ovoren problem postavile pitanje da li je određeni sistem aksiona predikatske logike prvoga reda potpun. Drugim riječima, da li omogućava izvođenje svih logički istinitih tvrdnji (tj. tvrdnji koje su istinite bez obzira na to kako interpretiramo osnovne termine i predikate od kojih su one izgrađene). Gödel je svoju istraživačku karijeru započeo rješavanjem tog ovorenog problema. Taj rad, koji će postati Gödlova doktorska teza, završen je u ljeto 1929., kada su mu bile samo 23 godine. Iako će znanstvena javnost tek postepeno razumijevati fundamentalnu važnost toga rada, on je već i u to vrijeme bio dovoljno istaknut da Gödelu pribavi reputaciju zvijezde u usponu.

Objasnit ćemo ukratko fundamentalno značenje teorema potpunosti. Čitaocu je sigurno poznato da deduktivna konzistentnost nekog sistema tvrdnji prvoga reda (najčešće su to aksiomi neke matematičke teorije) dokazujemo tako da osnovne termine i predikate, koje nalazimo u tim tvrdnjama, interpretiramo u nekom modelu (kao objekte i relacije tog modela), pa zatim dokazujemo da su u tom modelu (uz interpretaciju) sve razmatrane tvrdnje istinite. Naime, ako sistem tvrdnji ima model, onda (neposredno) zaključujemo da je deduktivno konzistentan, jer ako nešto postoji o tome ne može važiti, a ujedno i ne važiti neki iskaz. Ukratko, posto-
janje implicira konzistentnost. Da spriječimo moguće nesporazume, upozoravamo da je deduktivna konzistentnost, kraće konzistentnost, pojam vezan uz odgovarajući deduktivni sistem. Naime, sistem tvrđnji je deduktivno konzistentan ako se iz njega u odgovarajućem deduktivnom sistemu ne može izvesti kontradikcija.

Zapravo, trebali bismo eksplcitno reći da je on konzistentan s obzirom na određeni deduktivni sistem, no on se uvijek implicitno podrazumijeva. Isto tako, pretpostavljamo da je deduktivni sistem koji razmatramo korektan, tj. da njegove dedukcije istinite tvrđnje prevode u istinite tvrđnje. Međutim, mnogi će matematičari, budući da teško može odrediti predmet svoje struke, reći da postojanje u matematičkim čak i nije drugo do (deduktivna) konzistentnost: „Moja je teorija smislena (što u krajnjoj liniji znači da je teorija nečega), zato što je konzistentna”. Ali on time tvrdi da konzistentnost implicira postojanje; da svaki deduktivno konzistentni sistem tvrđnji prvoga reda ima (bar jedan) model koji ga potvrđuje. To nije sasvim jasno i mnogi će prihvatiti ovaj stav samo zato što ga pogrešno miješaju s njegovim ranije spomenutim obratom (da postojanje implicira konzistentnost), koji jest jasan. Fundamentalno značenje Gödelovog teorema upravo je u tome što se njime dokazuje onaj ne evidentni stav. Gödel je pokazao kako za bilo koji sistem tvrđnji prvoga reda koji je konzistentan s obzirom na Hilbert-Ackermannove dedukcije, možemo konstruirati model koji će ga potvrđiti. Stoviše, on je pokazao da uvijek možemo konstruirati prebrojivi model koji će potvrđiti deduktivno konzistentni sistem tvrđnji. Posljedice tog dodatka u najmanju ruku začudjuju. Naravno, za dokaz je bitno da se razmatraju samo tvrđnje prvog reda. Ali svu današnju matematiku možemo smjestiti u ovijke teorije skupova koja je aksiomatizirana aksiomima prvoga reda?!

Razdoblje od 1929. do 1939. godine desetljeće je intenzivnog Gödelovog rada u matematičkoj logici koje rezultira njegovim glavnim doprinosima ovoj disciplini.

Značenje Gödelovog teorema nepotpunosti za buduća istraživanja među prvima je uočio Johan von Neumann, koji ih je odmah počeo i poticati. Samo tri godine stariji od Gödela, i sam dijete (mađarskog dijela) Austro-Ugarske, von Neumann bijaše već dobro poznat u matematičkim krugovima zahvaljujući svojim izvanrednim i neobičajeno raznovrsnim radovima u teoriji skupova, teoriji dokaza (i. e. Hilbertovom metamatematičkom programa), analizi i matematičkoj fizici. Međutim, ostali djelatnici u matematičkoj logici polako su i dosta teško usvajali Gödelov novi rad. Na primjer, Paul Bernays, Hilbertov asistent i suradnik, iako je brzo prihvatio i uočio značenje Gödelovih rezultata, imao je priličnih poteškoća s razumijevanjem samih dokaza, a uklonjene su tek nakon prepiske u kojoj je Gödel više puta objašnjavao svoje dokaze. Gödelov rad je čak nailazio na kritiku, s raznih strana, koja je gotovo uvijek bila uzrokovana brkanjem distinkcija nužnih za pravilno razumijevanje njegovih dokaza (npr. istinitost vs. dokazivost, iskaz vs. njegova sintaktička reprezentacija u aritmetici itd.). Čak je i slavni Ernst Zermelo, teoretičar skupova, Gödelove osnovne pojmove interpretirao tako da je dolazio u doslovnu kontradikciju s Gödelovim rezultatima. U prepisci u toku 1931. godine Gödel
se, čini se bezuspješno, trudio da objasni svoj rad Zermelu. Ipak, teoremi nepotpunosti na kraju su ipak shvaćeni i prihvatili su ih svi koji su se kretali glavnim tokom matematičke logike. Štoviše, Gödelovi rezultati i metode proželi su sve aspekte toga glavnog toka, a možemo čak reći da su ga i odredili.

U ranim 30-im godinama Gödel je neprekidno i uporno napredivao svoja znanja iz mnogih područja logike i matematike. Bio je redovni služatelj i predavač na Mengerovim kolokvijima u Beču, koji su počeli sa sastajanjem 1929. godine, a surađivao je i u njihovu izdanju u „Ergebnisse eines mathematischen Kolloquiums“. Od 1932. do 1936. objavio je u tom časopisu 13 (kao i uvijek) kratkih ali značajnih članaka s raznovrsnom tematikom, uključujući npr. intuicionističku logiku i geometriju.

Intuicionističku logiku formulirao je Heyting 1930. godine kao formalizaciju osnovnih argumenta dopuštenih u Brouwerovoj intuicionističkoj rekonstrukciji matematike. Presudna je razlika u usporedbi s klasičnom logikom, intuicionističko odbacivanje načela isključenja trećeg. Počevši od 1932. godine, Gödel se često bavio sistemima temeljenim na intuicionističkoj logici, iako nije prihvaćao Brouwerove ideje. Taj je interes možda moguće objasniti njegovim radom iz 1933. godine, u kojem je pokazao da se klasični sistemi mogu interpretirati u odgovarajućim intuicionističkim sistemima upotrebom tzv. „negativnog“ prijevoda svake formule A u formuli A', za koji vrijedi da intuicionistička dokazivost prijevoda A' slijedi iz klasične dokazivosti originala A (naravno za bogatu klasu A-ova, prevod A' će se poklapati s originalom A i za takve se formule intuicionistički i klasični sistem poklapaju s obzirom na dokazivost). Do sličnog je rezultata (s nešto drukčijim prijevodom) došao i Gentzen. Filozofski gledano, Gödelova je interpretacija značajna jer pokazuje da se klasični sistem, npr. klasične aritmetike, može u određenom smislu smatrati podsistemom intuicionističkog sistema aritmetike. Neposredna je posljedica ta da je klasična aritmetika isto toliko „sigurna“ koliko je to i intuicionistička aritmetika (one su ekvivalentne), iako se razlozi za prihvaćanje jedne, odnosno druge bitno razlikuju. U jednom drugom radu iz 1933. godine Gödel je obrnuo točku gledanja, interpretirajući intuicionističku propozicionalnu logiku u okviru klasične propozicionalne logike obogaćene operatorom B, gdje B
sugerira *beweisbar* (tj. dokaziv). Tako dobiveni B-sistem jedan je od klasičnih S4-sistema modalne logike. Gödel je upozorio da, zbog njegovog teorema o nepotpunosti, B ipak ne možemo interpretirati kao reprezentaciju dokazivosti u nekom formalnom sistemu. Ipak, tih se godina u logici mnogo radilo baš na takvim interpretacijama operatora B.

U vezi s Mengerovim kolokvijem spomenimo još da je jedan od njegovih stranih gostiju 1930. godine bio poljski logičar Alfred Tarski, koji je uskoro postao slavan zbog svojeg rada o pojmu istine u formalnim jezicima (temi donekle vezanoj uz Gödelov rad o nepotpunosti formalnih sistema) i još kasnije zbog svojeg vodstva u stvaranju i razvijanju teorije modela. Tarski je u Beču boravio nekoliko tjedana i u tom se razdoblju upoznao s Gödelom, koji je iskoristio tu priliku da s njim prodiskutira rezultate svoje teze iz 1929. godine. U nešto duži posjet, kao gost Mengerovog kolokvija, Tarski je ponovo došao 1935. godine.

sve do ljeta 1937. Kada je napokon bio sposoban da preuzme nastavu, počeo je predavati o svojim novim velikim rezultatima u aksiomatskoj teoriji skupova.

Teoretičari skupova pokušavali su, počevši od samog uteželjitelja teorije Georga Cantora, riješiti dva osnovna problema: mogućnost dobrog uređenja proizvoljnog skupa i određenje kardinalnog broja (tj. prirodne mjere) kontinuuma. Zermelo je riješio prvi problem, neformalno 1904. godine i u sklopu svojeg novouvedenog aksiomatskog sistema teorije skupova 1908, pokazavši da je mogućnost dobrog uredenja proizvoljnog skupa ekvivalentna aksiomu izbora (AC), koji tvrđi da za svaki skup skupova \(S \) postoji skup koji sadrži točno po jedan element iz svakog skupa u \(S \). Pozitivnim rješenjem tog problema napokon je potvrđeno da svaki skup ima točno određeni kardinalni broj u uredenom nizu transfinitnih kardinala, budući da se taj zaključak nužno pozivao na mogućnost dobrog uredenja svakog skupa. Međutim, pitanje točnog određenja mjesta kardinalnog broja kontinuuma u tom uredenom nizu i dalje je ostalo neriješeno. Cantor je dokazao da je kardinalni broj kontinuuma sigurno veći od kardinalnog broja najmanjeg beskonačnog skupa (kakav je npr. skup prirodnih brojeva 1, 2, 3, 4, \ldots), ali nije uspio dokazati da je taj kardinalni broj upravno drugi u nizu beskonačnih kardinalnih brojeva. To je bila samo njegova hipoteza, koja je postala poznata pod imenom hipoteze kontinuuma (CH). Nakon svojih rezultata nepotpunosti Gödel se okrenuo ovim problemima teorije skupova. On je tvrdnje AC i CH razmatrao u sklopu aksiomske teorije skupova ZF (koju su nakon Zermela proširili i točnije formulirali Fraenkel, Skolem, von Neumann i Bernays) ispitujući da li ih je moguće dokazati koristeći se aksiomima teorije ZF. To je pitanje bilo posebno značajno za CH budući da se ova tvrdnja, za raliku od AC, nije mogla smatrati evidentnom po samoj sebi. Konačni rezultat, do kojeg je Gödel došao u lije 1937, bio je da su aksiom izbora i hipoteza kontinuuma, kao i njezina poopočena verzija, generalizirana hipoteza kontinuuma (GCH) suglasne s preostalim aksiomima teorije skupova, ako su oni konzistentni, te da se stoga ni AC ni CH ne mogu opovrić u okviru teorije ZF.

Osnovna Gödelova ideja bila je definicija konstruktibilnog skupa u okviru ZF. On je doista rano očigledno da će moći dokazati da konstruktibilni skupovi čine model za sve aksiome iz ZF, a da su, uz to, i model za AC i GCH. Von Neumann je već 1935. godine saopćio da njegov model zadovoljava sve aksiome iz ZF, a, osim toga, i AC, ali su mu trebale još puno dvije godine da to isto dojke za GCH. Naime, s tada dostupnim matematičkim metodom, svi detalji koje je Gödel trebao ustanoviti bili su gotovo nesavladivi, pa je taj suputni i složeni rad za Gödelu bio izuzetno težak, pogotovo u svojoj završnici. To je sigurno bio jedan od uzroka česti mentalnih stresa koji su ga mučili u toku čitavog razdoblja od 1934. do 1937. godine.

Sljedeće godine donijele su značajne promjene u Gödelovom privatnom životu i u njegovoj karijeri. Majka se vratila u Brno 1937, a brat je nastavio svoju medicinsku praksu u Beču. To je olakšalo da se Gödel i Adele Nimburšky vjenčaju, što su i učinili u rujnu 1938. Taj brak je bio trajan i skladen. U krugu Gödelovih bečkih prijatelja i kolega zbile su se 30-ih godina mnoge promjene. Njegovi najbliži prijatelji iz Bečkoga kruga napustili su Beč. Rudolf Carnap je 1931. godine otišao u Prag, a zatim u Ameriku. Gödelov učitelj Hans Hahn umro je 1934. godine. Moritz Schlick je 1936. ubio poremećeni bivši student. Uznemiren im slijedom događaja i općom situacijom u Austriji Karl Menger je sljedeće godine otišao na Sveučilište Notre Dame u SAD. Sve se to zbivalo u vrijeme teških ekonomskih uvjeta u kojim se Evropa našla nakon depresije 1929. i uspona Hidera i nacional-

Medu mnogim Morgensternovim anegdotama o Gödelu izdvaјa se jedna iz travnja 1948, kada je Gödel postao američki državljan, s Einsteinom i Morgensternom kao svjedocima. Gödel je trebalo pristupiti rutinskom ispitu za koji se marljivo pripremio, proučavajući ustanak SAD. Dan prije ispitogo Gödel je vidljivo užbeni došao k Morgensternu s riječima: „Otkrio sam logičko-legalnu mogućnost
da se SAD pretvore u diktaturu." Morgenstern je uskoro ustanovio da, unatoč logičkoj izvrsnosti Gödelovog argumenta, njegova stvarna realizacija ostaje krajnje hipotetička, pa je od Gödele zahtijevao da svoje otkriće ne objelodanjuje na ispitu. Sljedeće jutro, Morgenstern je odvezao Gödele i Einsteinu iz Princetona u Trenton gdje se provodio postupak prihvaćanja državljanstva. Einstein se cijelim putem uspješno trudio da mnogobrojnim zabavnim anegdotama opusti Gödele. U Trentonu je službenik, očito impresioniran Einsteinovom i Morgensternovom prisutnošću, obojicu pozvao da prisustvuju ispitu, iako se on (proceduralno) polaže nasamo. Počeo je obratviši se Gödelu: „Dosad ste imali njemačko državljanstvo.“ Gödel ga je ispravio objašnjavajući da je Austrijanac. „Svakako“ nastavio je službenik „bilo je to pod davoljom diktaturn... no, na sreću, u Americi to nije moguće.“ „Naprotiv“, uzviknuo je Gödel, „ja znam kako do toga može doći.“ Sva su trojica imala velike teškoća da spriječe Gödelovu elabraciju vlastitog otkrića, kako bi procedura bila privedena kraju predviđenim prihvaćanjem državljanstva SAD.

Položaj bez formalnih obaveza pružio je Gödelu potpunu slobodu istraživanja. U toku prvih godina na Institute for Advanced Study nastavio je svoj rad u matematičkoj logici, ulazajući velike napore da dokaže da su aksiom izbora i hipoteza kontinuuma nezavisni od ostalih aksioma ZF-teorije skupova. To je uspio samo djelomično, a to s obzirom na (manje značajni) aksiom izbora. Ti djelomični rezultati nikada nisu objavljeni. Nalazimo ih u Nachlassu, koji će vjerojatno biti objavljen u nekom od svezaka njegovih sabranih djela. Drugo Gödelovo postignuće iz tog razdoblja (objavljeno tek 1958) nova je konstruktivna interpretacija aritmetike, kojom je dokazana njezina konzistentnost. Naravno, metode dokazivanja premašuju finitu sredstva, u Hilbertovom smislu „konkretna intuičije“, budući da su ta finita sredstva obuhvaćena elementarnim aritmetikom pa stoga (po Gödelovu teoremu nepotpunosti) ne mogu biti dovoljna za dokazivanje konzistentnosti same aritmetike. Naime, Gödel se u svojem dokazu konzistentnosti koristi izračunljivim funkcionalima konačnog tipa pomoću kojih interpretira aritmetičke propozicije dokazujući tako konzistentnost aritmetike. On navodi razloge za prihvaćanje ovog apstraktnog pojma kao konstruktivnog, pa u tom smislu i njegov dokaz možemo smatrati konstruktivnim. Tako je 40-ih godina rušilac Hilbertovog programa (iz 1931), poradio na njegovom ponovnom oživljanju. (Funkcionalnu interpretaciju je 60-ih godina Spector proširio na analizu, dokazujući tako konzistentnost analize. Konstruktivnost tog proširenja je upitna.)

Od 1943. godine dalje, Gödel se gotovo sasvim posvetio filozofiji, najprije filozofiji matematike pa općoj filozofiji i metafizici. Godine 1944. objavljuje poznati članak o Russellovoj matematičkoj logici, koji daje izuzetno značajnu analizu Russellova rada, a osim tega prvi put javno iznosi Gödelov „platonistički“ stav prema postojanju matematičkih objekata. Taj je stav, u kontekstu teorije skupova, još izraženiji u Gödelovom jedinom preglednom radu O Cantorovom problemu kontinuuma iz 1947. godine. Što se tiče opće filozofije, Gödel je nastavio svoja započeta proučavanja Kanta i Leibniza, koja je 50-ih dopunio fenomenologijom Edmunda
Husserla. (U Nachlassu su mnoge bilješke o radovima tih filozofa.) Jedan, naizgled, izuzetak u neprekinutom slijedu tih filozofskih studija Gödelov je iznenadjujući rad na općoj teoriji relativnosti u razdoblju od 1947. do 1951. godine, koji je rezultirao tzv. Gödelovim kozmoilogškim modelom. Jedan samo naizgled izuzetak, jer je Gödel upozorio da taj rad nije bio potaknut njegovim mnogobrojnim diskusijama s Einsteinom, nego njegovim vlastitim zanimanjem za Kantovu filozofiju prostora i vremena. (Uostalom Einstein se u to vrijeme intenzivno trudio oko jedinstvene teorije polja u čiju je mogućnost Gödel sumnjao.)

