Towards Behavioral Theory of Algorithms

Dean Rosenzweig

Microsoft Research,
on leave from University of Zagreb
Algorithms
Algorithms

- arithmetical
Algorithms

- arithmetical
- algebraic
Algorithms

- arithmetical
- algebraic
- geometric
Algorithms

- arithmetical
- algebraic
- geometric
- of calculus
Algorithms

- arithmetical
- algebraic
- geometric
- of calculus
- paper-and-pencil
Algorithms

- arithmetical
- algebraic
- geometric
- of calculus
- paper-and-pencil
- mouse-clicking
Algorithms

- arithmetical
- algebraic
- geometric
- of calculus
- paper-and-pencil
- mouse-clicking
- patient handling
Steps
Steps

• long-division algorithm
Steps

- long-division algorithm – a step in
- cryptographic algorithm
Steps

• long-division algorithm – a step in

• cryptographic algorithm – a step in

• cryptographic protocol
Steps

• long-division algorithm – a step in
• cryptographic algorithm – a step in
• cryptographic protocol – a step in
• connection establishment
Steps

- long-division algorithm – a step in
- cryptographic algorithm – a step in
- cryptographic protocol – a step in
- connection establishment – a step in
- client-server application
Church-Turing Thesis
Church-Turing Thesis

Every computable function \(\mathbb{N}^k \rightarrow \mathbb{N} \) is computable by a Turing machine.
Church-Turing Thesis

Every computable function $\mathbb{N}^k \rightarrow \mathbb{N}$ is computable by a Turing machine.

Every arithmetical algorithm can be simulated by a Turing machine.
Church-Turing Thesis

Every computable function $\mathbb{N}^k \rightarrow \mathbb{N}$ is computable by a Turing machine.

Every arithmetical algorithm can be simulated by a Turing machine.

If this is essentially all about algorithms, then why semantics?
Church-Turing Thesis

Every computable function $\mathbb{N}^k \rightarrow \mathbb{N}$ is computable by a Turing machine.

Every arithmetical algorithm can be simulated by a Turing machine.

If this is essentially all about algorithms, then why semantics?

The abstraction level of the simulation is fixed.
Church-Turing Thesis

Every computable function $\mathbb{N}^k \rightarrow \mathbb{N}$ is computable by a Turing machine.

Every arithmetical algorithm can be simulated by a Turing machine.

If this is essentially all about algorithms, then why semantics?

The abstraction level of the simulation is fixed. Intent of the algorithm buried under layers of representation.
Abstract Algorithms

Algorithms over ADT’s (lists, trees, . . .)
Abstract Algorithms

Algorithms over ADT’s (lists, trees, . . .)

Euclidean ring: structure where Euclidean algorithm works (integers, Gaussian integers, polynomials, . . .)
Abstract Algorithms

Algorithms over ADT’s (lists, trees, . . .)

Euclidean ring: structure where Euclidean algorithm works (integers, Gaussian integers, polynomials, . . .)

Complete metric space: structure where Banach fixpoint algorithm works
Abstract Algorithms

Algorithms over ADT’s (lists, trees, . . .)

Euclidean ring: structure where Euclidean algorithm works (integers, Gaussian integers, polynomials, . . .)

Complete metric space: structure where Banach fixpoint algorithm works

CPO: structure where Knaster-Tarski least fixpoint algorithm works
Are Abstract Algorithms Algorithms?
Are Abstract Algorithms Algorithms?

or just schemata,
Are Abstract Algorithms Algorithms?

or just schemata, which instantiate to algorithms only upon “implementation”, via “encoding”?
Are Abstract Algorithms Algorithms?

or just schemata, which instantiate to algorithms only upon “implementation”, via “encoding”?

By behavioral theory, yes,
Are Abstract Algorithms Algorithms?

or just schemata, which instantiate to algorithms only upon “implementation”, via “encoding”?

By behavioral theory, yes, they are algorithms and need to be captured.
Are Abstract Algorithms Algorithms?

or just schemata, which instantiate to algorithms only upon “implementation”, via “encoding”?

By behavioral theory, **yes**, they are algorithms and need to be captured.

What do they work on, what are their states?
Abstract States
Abstract States

FO structures (vocabulary \mathcal{V}, carrier $|X|$, interpretation of function and relation symbols)
Abstract States

FO structures (vocabulary \(\Upsilon \), carrier \(|X| \), interpretation of function and relation symbols)

all structures of logic are FO
Abstract States

FO structures (vocabulary Υ, carrier $|X|$, interpretation of function and relation symbols)

all structures of logic are FO (although not all logic is FO)
Abstract States

FO structures (vocabulary Υ, carrier $|X|$, interpretation of function and relation symbols)

all structures of logic are FO (although not all logic is FO)

inessential technical choices:
Abstract States

FO structures (vocabulary \(\Upsilon \), carrier \(|X|\), interpretation of function and relation symbols)

all structures of logic are FO (although not all logic is FO)

inessential technical choices:

 Booleans and Boolean operations in vocabulary, purely functional structures
Abstract States

FO structures (vocabulary \(\mathcal{V} \), carrier \(|X|\), interpretation of function and relation symbols)

all structures of logic are FO (although not all logic is FO)

inessential technical choices:

Booleans and Boolean operations in vocabulary, purely functional structures

\texttt{undef} in vocabulary, to model partial functions
Abstract States are Memories
Abstract States are Memories

Structure as memory: location \(\langle f, \langle a_1, \ldots, a_n \rangle \rangle \) \((f \in \Upsilon, a_i \in X)\)
Abstract States are Memories

Structure as memory: location $\langle f, \langle a_1, \ldots, a_n \rangle \rangle$ ($f \in \Upsilon, a_i \in X$)

structure $=$ assignment of values to locations
Structure as memory: location $\langle f, \langle a_1, \ldots, a_n \rangle \rangle$ ($f \in \Upsilon, a_i \in X$)

structure = assignment of values to locations

given $|X|, \Upsilon, X \leftrightarrow (\ldots, f_X, \ldots) \leftrightarrow (\ldots, l_X, \ldots)$
Abstract States 2

An algorithm over Υ has a class of states: isomorphism-closed class of Υ-structures S.
Abstract States 2

An algorithm over Υ has a class of states: isomorphism-closed class of Υ-structures \mathcal{S}

ex. Euclidean rings, CPOs, ADTs, . . .
Abstract States 2

An algorithm over Υ has a class of states: isomorphism-closed class of Υ-structures S

ex. Euclidean rings, CPOs, ADTs, . . .

isomorphism closure means: everything relevant must be shown in the vocabulary
Abstract States 2

An algorithm over Υ has a class of states: isomorphism-closed class of Υ-structures S

ex. Euclidean rings, CPOs, ADTs, . . .

isomorphism closure means: everything relevant must be shown in the vocabulary

initial states $\emptyset \neq I \subseteq S$, also isomorphism closed
Algorithms Transform States
Algorithms Transform States

algorithm defines one-step state transformation \(\tau : S \rightarrow S' \),
Algorithms Transform States

algorithm defines one-step state transformation \(\tau : S \rightarrow S' \), but how?
Algorithm defines one-step state transformation $\tau : S \rightarrow S$, but how?

If $Y = \tau(X)$, let $\Delta(X) = Y - X = \{\langle l, l_Y \rangle : l_Y \neq l_X\}$
algorithm defines one-step state transformation $\tau : S \rightarrow S$, but how?

if $Y = \tau(X)$, let $\Delta(X) = Y - X = \{\langle l, l_Y \rangle : l_Y \neq l_X\}$

assume $|Y| = |X|$, algorithm doesn’t change carrier
Algorithms Transform States

algorithm defines one-step state transformation $\tau : S \rightarrow S$, but how?

if $Y = \tau(X)$, let $\Delta(X) = Y - X = \{\langle l, l_Y \rangle : l_Y \neq l_X \}$

assume $|Y| = |X|$, algorithm doesn’t change carrier (to be discussed later)
algorithm defines one-step state transformation $\tau : S \rightarrow S$, but how?

if $Y = \tau(X)$, let $\Delta(X) = Y - X = \{\langle l, l_Y \rangle : l_Y \neq l_X \}$

assume $|Y| = |X|$, algorithm doesn’t change carrier (to be discussed later)

$$\Delta(X) = \{\langle\langle f, \vec{a}\rangle, b \rangle : f_Y(\vec{a}) = b \neq f_X(\vec{a}), \vec{a}, b \in |X| = |Y|\}$$
algorithms transform states

algorithm defines one-step state transformation \(\tau : S \rightarrow S \), but how?

if \(Y = \tau(X) \), let \(\Delta(X) = Y - X = \{ \langle l, l_Y \rangle : l_Y \neq l_X \} \)

assume \(|Y| = |X| \), algorithm doesn’t change carrier (to be discussed later)

\[
\Delta(X) = \{ \langle \langle f, \vec{a} \rangle, b \rangle : f_Y(\vec{a}) = b \neq f_X(\vec{a}), \vec{a}, b \in |X| = |Y| \}
\]

structures as memories: \(Y \) arises from \(X \) by executing a set of assignments of form \(\langle \langle f, \vec{a} \rangle, b \rangle \),
Algorithms Transform States

algorithm defines one-step state transformation $\tau : S \rightarrow S$, but how?

if $Y = \tau(X)$, let $\Delta(X) = Y - X = \{\langle l, l_Y \rangle : l_Y \neq l_X \}$

assume $|Y| = |X|$, algorithm doesn’t change carrier (to be discussed later)

$\Delta(X) = \{\langle \langle f, \vec{a} \rangle, b \rangle : f_Y(\vec{a}) = b \neq f_X(\vec{a}), \vec{a}, b \in |X| = |Y| \}$

structures as memories: Y arises from X by executing a set of assignments of form $\langle \langle f, \vec{a} \rangle, b \rangle$, could also be read as $f(\vec{a}) := b$, updates
Algorithms Do in Finite Steps
Algorithms Do in Finite Steps

what else?
Algorithms Do in Finite Steps

what else? algorithms in each step do something finite:
Algorithms Do in Finite Steps

what else? algorithms in each step do something finite: $\Delta(X)$ is finite
Algorithms Do in Finite Steps

what else? algorithms in each step do something finite: \(\Delta(X) \) is finite

finiteness will follow from other assumptions,
Algorithms Do in Finite Steps

what else? algorithms in each step do something finite: $\Delta(X)$ is finite

finiteness will follow from other assumptions, for different kinds of algorithms for different reasons
Abstractness Once More
if $X \cong X'$, then $\tau(X) \cong \tau(X')$,
Abstractness Once More

if $X \cong X'$, then $\tau(X) \cong \tau(X')$, an algorithm cannot distinguish
Abstractness Once More

if $X \cong X'$, then $\tau(X) \cong \tau(X')$, an algorithm cannot distinguish

thus also $\Delta(X) \cong \Delta(X')$
Species of Algorithms
Species of Algorithms

- the simplest model: isolated, non-parallel
Species of Algorithms

Species of Algorithms

- parallel isolated algorithms
Species of Algorithms

Species of Algorithms

Species of Algorithms

Species of Algorithms

• the simplest model: isolated, non-parallel small-step: Gurevich 2000.

• parallel interactive algorithms: Blass-Gurevich-Rosenzweig 2005.
Species of Algorithms

• a case study: cryptographic algorithms, Rosenzweig-Runje-Slani 2004/5.
Q: Is This Just Philosophy?
Q: Is This Just Philosophy?

A: No, it enters the next Visual Studio.
Q: Is This Just Philosophy?

A: No, it enters the next Visual Studio.

Q: (a lady in ms-media) What does your group do?
Q: Is This Just Philosophy?

A: No, it enters the next Visual Studio.

Q: (a lady in ms-media) What does your group do?

A: (the author) Well, . . . , we investigate modelling methodology, . . . , what we are after is understanding . . .
Q: Is This Just Philosophy?

A: No, it enters the next Visual Studio.

Q: (a lady in ms-media) What does your group do?

A: (the author) Well, . . . , we investigate modelling methodology, . . . , what we are after is understanding . . .

Q: Yeah?
Q: Is This Just Philosophy?

A: No, it enters the next Visual Studio.

Q: (a lady in ms-media) What does your group do?

A: (the author) Well, . . . , we investigate modelling methodology,. . . , what we are after is understanding . . .

Q: Yeah?

A: Well, when you understand, you can build a good model. . .
Q: Yeah?
Q: Yeah?

A: And from a good model, you can automatically generate good tests for the implementation.
Q: Yeah?

A: And from a good model, you can automatically generate good tests for the implementation.

Q: Oh I see.
Whither Visual Studio?
Whither Visual Studio?

A large class of algorithms (parallel ordinary interactive) is provably encodable in the specification language of ASMs
Whither Visual Studio?

A large class of algorithms (parallel ordinary interactive) is provably encodable in the specification language of ASMs

15 years of modelling experience with ASM language (semantics of real programming languages, compilers, concurrent systems, hardware, . . .)
Whither Visual Studio?

A large class of algorithms (parallel ordinary interactive) is provably encodable in the specification language of ASMs

15 years of modelling experience with ASM language (semantics of real programming languages, compilers, concurrent systems, hardware, . . .)

ASM language implemented in AsmL (and others), recently Spec#,.
Whither Visual Studio?

A large class of algorithms (parallel ordinary interactive) is provably encodable in the specification language of ASMs.

15 years of modelling experience with ASM language (semantics of real programming languages, compilers, concurrent systems, hardware, etc).

ASM language implemented in AsmL (and others), recently Spec#, direct extension of c#.
Whither Visual Studio?

A large class of algorithms (parallel ordinary interactive) is provably encodable in the specification language of ASMs

15 years of modelling experience with ASM language (semantics of real programming languages, compilers, concurrent systems, hardware, . . .)

ASM language implemented in AsmL (and others), recently Spec#, direct extension of c#

Spec# used for assertional verification, model-checking and, under SpecExplorer tool, for model-based test generation, for any .net based code
testers want it, and now VS wants it
Postulates (Definition) for Small-Step
Postulates (Definition) for Small-Step

- states
Postulates (Definition) for Small-Step

- states
- isomorphism
Postulates (Definition) for Small-Step

- states
- **isomorphism** preserves everything
Postulates (Definition) for Small-Step

- states
- isomorphism preserves everything
- updates
Postulates (Definition) for Small-Step

• states

• isomorphism preserves everything

• updates $\Delta(X)$
Postulates (Definition) for Small-Step

- **states**
- **isomorphism** preserves everything
- **updates** $\Delta(X)$ if non-contradictory, $\tau(X) = X + \Delta(X)$, otherwise algorithm fails,
Postulates (Definition) for Small-Step

- states

- isomorphism preserves everything

- updates $\Delta(X)$ if non-contradictory, $\tau(X) = X + \Delta(X)$, otherwise algorithm fails,

- bounded work
Postulates (Definition) for Small-Step

- **states**

- **isomorphism** preserves everything

- **updates** $\Delta(X)$ if non-contradictory, $\tau(X) = X + \Delta(X)$, otherwise algorithm fails,

- **bounded work** “algorithm is defined by a finite text”:
Postulates (Definition) for Small-Step

- **states**

- **isomorphism** preserves everything

- **updates** $\Delta(X)$ if non-contradictory, $\tau(X) = X + \Delta(X)$, otherwise algorithm fails,

- **bounded work** “algorithm is defined by a finite text”: there is a finite set of terms T s.t. $X =_T Y \Rightarrow \Delta(X) = \Delta(Y)$
Postulates (Definition) for Small-Step

- **states**

- **isomorphism** preserves everything

- **updates** $\Delta(X)$ if non-contradictory, $\tau(X) = X + \Delta(X)$, otherwise algorithm fails,

- **bounded work** “algorithm is defined by a finite text”: there is a finite set of terms T s.t. $X =_T Y \Rightarrow \Delta(X) = \Delta(Y)$

 interaction is the source of all nondeterminism
Interactive Algorithms, Ordinary
Interactive Algorithms, Ordinary

intrastep interaction
Interactive Algorithms, Ordinary

intrastep interaction (step is in the eye of beholder)
Interactive Algorithms, Ordinary

intrastep interaction (step is in the eye of beholder)

queries: send m to p
Interactive Algorithms, Ordinary

intrastep interaction (step is in the eye of beholder)

queries: send m to p (labels—send, to, structure elements—m, p)
Interactive Algorithms, Ordinary

intrastep interaction (step is in the eye of beholder)

queries: send \(m \) to \(p \) (labels—send, to, structure elements—\(m, p \))

answers:
Interactive Algorithms, Ordinary

intrastep interaction (step is in the eye of beholder)

queries: send m to p (labels—send, to, structure elements—m, p

answers: structure elements
Interactive Algorithms, Ordinary

intrastep interaction (step is in the eye of beholder)

queries: send m to p (labels—send, to, structure elements—m, p

answers: structure elements

ordinary: all answers needed,
Interactive Algorithms, Ordinary

intrastep interaction (step is in the eye of beholder)

queries: send m to p (labels—send, to, structure elements—m, p

answers: structure elements

ordinary: all answers needed, order of answers doesn’t matter
Interactive Algorithms, Ordinary

intrastep interaction (step is in the eye of beholder)

queries: send \(m \) to \(p \) (labels—send, to, structure elements—\(m, p \))

answers: structure elements

ordinary: all answers needed, order of answers doesn’t matter

environment behavior: answer function
Synchrony and Asynchrony
Synchrony and Asynchrony

queries with trivial arguments: input
Synchrony and Asynchrony

queries with trivial arguments: *input*

queries with trivial answers: *output*, asynchronous
Synchrony and Asynchrony

queries with trivial arguments: *input*

queries with trivial answers: *output*, asynchronous

output-input queries: synchronous,
Synchrony and Asynchrony

queries with trivial arguments: \textit{input}

queries with trivial answers: \textit{output}, asynchronous

output-input queries: synchronous, caller cannot complete the step without an answer
Synchrony and Asynchrony

queries with trivial arguments: *input*

queries with trivial answers: *output*, asynchronous

output-input queries: synchronous, caller cannot complete the step without an answer

output-input can be faked
Synchrony and Asynchrony

queries with trivial arguments: \textit{input}

queries with trivial answers: \textit{output}, asynchronous

output-input queries: synchronous, caller cannot complete the step without an answer

output-input can be faked by output + input
Synchrony and Asynchrony

queries with trivial arguments: *input*

queries with trivial answers: *output*, asynchronous

output-input queries: synchronous, caller cannot complete the step without an answer

output-input can be faked by output + input with a shared unique argument value - “callback”
cf. socket layer of tcp/ip,..., modelling synchrony in asynchronous π-calculi
Postulates for Ordinary Interactive Small-Step Algorithms
Postulates for Ordinary Interactive Small-Step Algorithms

- states
Postulates for Ordinary Interactive Small-Step Algorithms

- states
- isomorphism
Postulates for Ordinary Interactive Small-Step Algorithms

- states

- isomorphism preserves everything
Postulates for Ordinary Interactive Small-Step Algorithms

- states

- isomorphism preserves everything

- interaction algorithm determines, for X, a causality relation $\alpha \vdash_X q$
Postulates for Ordinary Interactive Small-Step Algorithms

- states

- **isomorphism** preserves everything

- **interaction** algorithm determines, for \(X \), a *causality* relation \(\alpha \vdash X q \)

- updates
Postulates for Ordinary Interactive Small-Step Algorithms

• states

• **isomorphism** preserves everything

• **interaction** algorithm determines, for X, a *causality* relation $\alpha \vdash_X q$

• **updates** if α is a context (minimal answer function closed under \vdash_X), either failure or $\Delta^+(X, \alpha)$
• bounded work
• **bounded work** there is a finite set of terms T s.t. $X =_{T,\alpha} Y$ entails equal behavior at X, Y under α, and a uniform bound on length and breadth of contexts
Backgrounds—Data Structures and Fresh Objects
Backgrounds—Data Structures and Fresh Objects

say an algorithm needs ordered pairs, or lists, or . . . , in all states
Backgrounds—Data Structures and Fresh Objects

say an algorithm needs ordered pairs, or lists, or . . . , in all states

the problem: how to “create” fresh objects, without having to “create” pairs, lists, . . . related to it?
Backgrounds—Data Structures and Fresh Objects

say an algorithm needs ordered pairs, or lists, or. . . , in all states

the problem: how to “create” fresh objects, without having to “create” pairs, lists, . . . related to it?

background vocabulary (ex. pair, fst, snd, or cons, hd, tl, . . .)
Backgrounds—Data Structures and Fresh Objects

say an algorithm needs ordered pairs, or lists, or, . . . , in all states

the problem: how to “create” fresh objects, without having to “create” pairs, lists, . . . related to it?

background vocabulary (ex. pair, fst, snd, or cons, hd, tl, . . .)

unary predicate Atomic also assumed
Background Classes
Background Classes

an isomorphism-closed class K of structures over a vocabulary is a background class (Blass-Gurevich 2000) if
Background Classes

an isomorphism-closed class K of structures over a vocabulary is a background class (Blass-Gurevich 2000) if

$$(\forall U)(\exists X \in K) \text{Atoms}(K) = U$$
an isomorphism-closed class K of structures over a vocabulary is a *background class* (Blass-Gurevich 2000) if

- $(\forall U)(\exists X \in K) \text{Atoms}(K) = U$

- for $X, Y \in K$, any set-embedding $\xi : \text{Atoms}(X) \to \text{Atoms}(Y)$ uniquely extends to a structure-embedding
an isomorphism-closed class K of structures over a vocabulary is a background class (Blass-Gurevich 2000) if

- $(\forall U)(\exists X \in K)\text{Atoms}(K) = U$

- for $X, Y \in K$, any set-embedding $\xi : \text{Atoms}(X) \rightarrow \text{Atoms}(Y)$ uniquely extends to a structure-embedding

- for $X \in K$, every $x \in X$ has an envelope—smallest K-substructure containing x.
finitary background class: support of every singleton is finite (support—atoms in the envelope)
Backgrounds and Reserve of Algorithms
Backgrounds and Reserve of Algorithms

Fix K, of vocabulary \mathcal{V}_0. K is the background of an algorithm over $\mathcal{V} \supseteq \mathcal{V}_0$ if
Backgrounds and Reserve of Algorithms

Fix K, of vocabulary Υ_0. K is the background of an algorithm over $\Upsilon \supseteq \Upsilon_0$ if

- no background function $f \in \Upsilon_0$ is ever updated, and
Fix K, of vocabulary \mathcal{V}_0. K is the background of an algorithm over $\mathcal{V} \supseteq \mathcal{V}_0$ if

- no background function $f \in \mathcal{V}_0$ is ever updated, and
- the reduct of every state to \mathcal{V}_0 is in K.
Fix K, of vocabulary \mathcal{V}_0. K is the background of an algorithm over $\mathcal{V} \supseteq \mathcal{V}_0$ if

- no background function $f \in \mathcal{V}_0$ is ever updated, and
- the reduct of every state to \mathcal{V}_0 is in K.

exposed elements: in domain or codomain of a foreground function
Backgrounds and Reserve of Algorithms

Fix K, of vocabulary \mathcal{V}_0. K is the background of an algorithm over $\mathcal{V} \supseteq \mathcal{V}_0$ if

- no background function $f \in \mathcal{V}_0$ is ever updated, and
- the reduct of every state to \mathcal{V}_0 is in K.

exposed elements: in domain or codomain of a foreground function

active part of a state: the envelope of the set of exposed elements
reserve ("heap") of a state: atoms not in the active part
reserve ("heap") of a state: atoms not in the active part

Theorem Every permutation of the reserve extends to a unique isomorphism, which is the identity on the active part.
Parallel Ordinary Interactive Algorithms
Parallel Ordinary Interactive Algorithms

background of ordered pairs and hereditarily finite multisets assumed
Parallel Ordinary Interactive Algorithms

background of ordered pairs and hereditarily finite multisets assumed

there is a term Proclet, denoting a finite (multi)set in every state
Parallel Ordinary Interactive Algorithms

background of ordered pairs and hereditarily finite multisets assumed

there is a term Proclet, denoting a finite (multi)set in every state

every proclet executes the same algorithm, interpreting a 0-ary symbol me specially, as itself
Parallel Ordinary Interactive Algorithms

background of ordered pairs and hereditarily finite multisets assumed

there is a term Proclet, denoting a finite (multi)set in every state

every proclet executes the same algorithm, interpreting a 0-ary symbol me specially, as itself

they communicate by special queries, pushing (many-to-one) or pulling (one-to-many)
they may also issue external queries, communicating with the environment proper
Pushing and Pulling
Pushing and Pulling

proclet algorithm is a small-step ordinary interactive algorithm
Pushing and Pulling

proclet algorithm is a small-step ordinary interactive algorithm

proclet \(p \) pushes to \(q \) by issueing a query \texttt{push} \(m \) to \(q \)
Pushing and Pulling

proclet algorithm is a small-step ordinary interactive algorithm

proclet p pushes to q by issuing a query push m to q

proclet q, as answer to query myMail, obtains the multiset of all m's pushed to it “so far”
proclet p displays m at position i by issuing a query of form display m at i (it may do this once in a step)
proclet \(p \) displays \(m \) at position \(i \) by issuing a query of form \(\text{display} \ m \) at \(i \) (it may do this once in a step)

proclet \(q \) sees it by issuing a query \(\text{pullFrom} \ p \) at \(i \), obtaining the value displayed “so far”, or \(\text{undef} \) if none
So Far ?
take a quantifier-proclet, computing $(\forall x \in r) \varphi(x)$, where r denotes a finite (multi)set.
So Far?

take a quantifier-proclet, computing \((\forall x \in r)\varphi(x)\), where \(r\) denotes a finite (multi)set

it first displays a signal telling its children to go
So Far?

take a quantifier-proclet, computing \((\forall x \in r)\varphi(x)\), where \(r\) denotes a finite (multi)set

it first displays a signal telling its children to go

the children, one per each \(c \in r\), upon seeing the signal, compute the truth value of \(\varphi(c)\) and push it to parent
upon receiving all the mail, the quantifier computes $\text{AsSet}(\text{myMail}) = \{\text{true}\}$, where AsSet is a background function
upon receiving all the mail, the quantifier computes $\text{AsSet}(\text{myMail}) = \{\text{true}\}$, where AsSet is a background function

there is a tradeoff in intelligence between proclets and “scheduler”—by “proclets do everything” principle we opt for stupid scheduler and clever proclets,
upon receiving all the mail, the quantifier computes $\text{AsSet}(\text{myMail}) = \{\text{true}\}$, where AsSet is a background function.

there is a tradeoff in intelligence between proclets and “scheduler”—by “proclets do everything” principle we opt for stupid scheduler and clever proclets, the quantifier must know the cardinality of r, and busy-wait till it gets enough mail—expressible in its causality relation.
Computational Cryptography Model
Example: symmetric encryption scheme is a triple $(\mathcal{K}, \mathcal{E}, \mathcal{D})$

- \mathcal{K}: Parameter \times Coins \rightarrow Key
- \mathcal{E}: Key \times String \times Coins \rightarrow Ciphertext
- \mathcal{D}: Key \times String \rightarrow Plaintext

such that

$$\Pr[\mathcal{D}(k, \mathcal{E}(k, m, c)) = m] = 1$$
Computational Cryptography Model

Example: symmetric encryption scheme is a triple $(\mathcal{K}, \mathcal{E}, \mathcal{D})$

\[
\mathcal{K} : \text{Parameter } \times \text{ Coins } \longrightarrow \text{ Key}
\]
\[
\mathcal{E} : \text{Key } \times \text{ String } \times \text{ Coins } \longrightarrow \text{ Ciphertext}
\]
\[
\mathcal{D} : \text{Key } \times \text{ String } \longrightarrow \text{ Plaintext}
\]

such that

\[
\Pr[\mathcal{D}(k, \mathcal{E}(k, m, c)) = m] = 1
\]

Security is expressed in terms of probabilistic PTIME algorithms
Ensembles and Indistinguishability
Ensembles and Indistinguishability

$(\mathcal{K}, \mathcal{E}, \mathcal{D})$ and pairing $\langle \cdot, \cdot \rangle$ induce ensembles on strings

$\langle \mathcal{E}(\mathcal{K}(\eta, \cdot), 1, \cdot), 0 \rangle$
Ensembles and Indistinguishability

$(\mathcal{K}, \mathcal{E}, \mathcal{D})$ and pairing $\langle \cdot, \cdot \rangle$ induce ensembles on strings

$$\langle \mathcal{E}(\mathcal{K}(\eta, \cdot), 1, \cdot), 0 \rangle$$
Ensembles and Indistinguishability

$(\mathcal{K}, \mathcal{E}, \mathcal{D})$ and pairing $\langle \cdot, \cdot \rangle$ induce ensembles on strings

$\langle \mathcal{E}(\mathcal{K}(\eta, \cdot), 1, \cdot), 0 \rangle$

Indistinguishability by PPTIME algorithms (as a function of η)

$\mathcal{E}(\mathcal{K}(\eta, \cdot), 1, \cdot) \approx \mathcal{E}(\mathcal{K}(\eta, \cdot), \langle 0, 1 \rangle, \cdot)$
Ensembles and Indistinguishability

$(\mathcal{K}, \mathcal{E}, \mathcal{D})$ and pairing $\langle \cdot, \cdot \rangle$ induce ensembles on strings

$$\langle \mathcal{E}(\mathcal{K}(\eta, \cdot), 1, \cdot), 0 \rangle$$

Indistinguishability by PPTIME algorithms (as a function of η)

$$\mathcal{E}(\mathcal{K}(\eta, \cdot), 1, \cdot) \approx \mathcal{E}(\mathcal{K}(\eta, \cdot), \langle 0, 1 \rangle, \cdot)$$

let $K = \mathcal{K}(\eta, \cdot)$ in $\langle \mathcal{E}(K, 1, \cdot), K \rangle$

$\not\approx$

let $K = \mathcal{K}(\eta, \cdot)$ in $\langle \mathcal{E}(K, \langle 0, 1 \rangle, \cdot), K \rangle$
Abstract Cryptography Model

- Abstract representation of computational cryptography model
 - We abstract from security parameter η
 - Unlikely events become impossible
 - Strings are represented with elements of abstract base set
Abstract Cryptography Model

• Abstract representation of computational cryptography model
 – We abstract from security parameter η
 – Unlikely events become impossible
 – Strings are represented with elements of abstract base set

• Use of background structures
 – Abstraction: identification of elements with desired properties in a background structure
 – Necessary for creation in public key case
Example: Symmetric Encryption Scheme
Example: Symmetric Encryption Scheme

Background vocabulary: key, encrypt, decrypt (pair, left, right)
Example: Symmetric Encryption Scheme

Background vocabulary: key, encrypt, decrypt (pair, left, right)

Support is infinite collection Coins

key : Coins → Key
encrypt : Key × Message × Coins → Ciphertext
decrypt : Key × Ciphertext → Message ∪ {undef}
Example: Symmetric Encryption Scheme

Background vocabulary: key, encrypt, decrypt (pair, left, right)

Support is infinite collection Coins

key : Coins \rightarrow Key
encrypt : $\text{Key} \times \text{Message} \times \text{Coins} \rightarrow \text{Ciphertext}$
decrypt : $\text{Key} \times \text{Ciphertext} \rightarrow \text{Message} \cup \{\text{undef}\}$

decrypt(k_1, encrypt(k_2, m, c)) = \begin{cases} m & \text{if } k_1 = k_2 \\ \text{undef} & \text{otherwise} \end{cases}
How to Represent Computational Indistinguishability?
How to Represent Computational Indistinguishability?

identity of structures?
How to Represent Computational Indistinguishability?

identity of structures?

isomorphism?
How to Represent Computational Indistinguishability?

identity of structures?

isomorphism?

something else?
Some Definitions
Some Definitions

X and Y are distinguished by algorithm A if $\tau_A(X) = \text{true}$ and $\tau_A(Y) = \text{false}$
Some Definitions

X and Y are distinguished by algorithm A if $\text{output}_{\tau_A}(X) = \text{true}$ and $\text{output}_{\tau_A}(Y) = \text{false}$.

X and Y are indistinguishable by small-step algorithms if there is no small-step algorithm distinguishing them.
Some Definitions

X and Y are distinguished by algorithm A if $\text{output}_{\tau_A}(X) = \text{true}$ and $\text{output}_{\tau_A}(Y) = \text{false}$

X and Y are indistinguishable by small-step algorithms if there is no small-step algorithm distinguishing them

X and Y are similar ($X \sim Y$) if $\text{Val}(t_1, X) = \text{Val}(t_2, X)$ iff $\text{Val}(t_1, Y) = \text{Val}(t_2, Y)$ for all terms t_1, t_2
Some Definitions

X and Y are distinguished by algorithm A if output $\tau_A(X) = \text{true}$ and output $\tau_A(Y) = \text{false}$

X and Y are indistinguishable by small-step algorithms if there is no small-step algorithm distinguishing them

X and Y are similar ($X \sim Y$) if $\text{Val}(t_1, X) = \text{Val}(t_2, X)$ iff $\text{Val}(t_1, Y) = \text{Val}(t_2, Y)$ for all terms t_1, t_2

a is accessible in X if $a = \text{Val}(t, X)$ for some t
Some Properties
Some Properties

indistinguishability = similarity
Some Properties

indistinguishability = similarity

No learning by own actions
Some Properties

indistinguishability = similarity

No learning by own actions

- $X \sim Y \Rightarrow \tau_A(X) \sim \tau_A(Y)$
Some Properties

indistinguishability = similarity

No learning by own actions

• $X \sim Y \Rightarrow \tau_A(X) \sim \tau_A(Y)$

• a inaccessible in $X \Rightarrow a$ inaccessible in $\tau_A(X)$
Environment actions only possible source of learning
Environment actions only possible source of learning

Holds also with importing over background structures
Example: Attempt at Abstraction by Isomorphism
Example: Attempt at Abstraction by Isomorphism

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K
Example: Attempt at Abstraction by Isomorphism

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K

Vocabulary $\Upsilon = \{f, g, \text{decrypt}, \text{fst}, \text{snd}, \ldots \}$
Example: Attempt at Abstraction by Isomorphism

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K

Vocabulary $\Upsilon = \{f, g, \text{decrypt}, \text{fst}, \text{snd}, \ldots \}$

Base set $|S| = |T| = \{0, 1, e, k, p, \ldots \}$
Example: Attempt at Abstraction by Isomorphism

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K

Vocabulary $\Upsilon = \{f, g, \text{decrypt}, \text{fst}, \text{snd}, \ldots \}$

Base set $|S| = |T| = \{0, 1, e, k, p, \ldots \}$
Interpretations in $S \cong$ and $T \cong$: $f_{S \cong} = f_{T \cong} = e$
Interpretations in S_{\sim} and T_{\sim}: $f_{S_{\sim}} = f_{T_{\sim}} = e$

$$\Delta_{\sim}(I, S) = \{\langle g, k \rangle, \langle \text{decrypt}, \langle e, k \rangle, p \rangle, \langle \text{fst}, p, 1 \rangle, \langle \text{snd}, p, 0 \rangle\}$$

$$\Delta_{\sim}(I, T) = \{\langle g, k \rangle, \langle \text{decrypt}, \langle e, k \rangle, 1 \rangle\}$$
Interpretations in $S \cong$ and $T \cong$: $f_{S \cong} = f_{T \cong} = e$

$$\Delta_{\cong}(I, S) = \{\langle g, k \rangle, \langle \text{decrypt}, \langle e, k \rangle, p \rangle, \langle \text{fst}, p, 1 \rangle, \langle \text{snd}, p, 0 \rangle\}$$

$$\Delta_{\cong}(I, T) = \{\langle g, k \rangle, \langle \text{decrypt}, \langle e, k \rangle, 1 \rangle\}$$
Interpretations in $S \simeq$ and $T \simeq$: $f_{S \simeq} = f_{T \simeq} = e$

$$\Delta \simeq (I, S) = \{ \langle g, k \rangle, \langle \text{decrypt}, \langle e, k \rangle, p \rangle, \langle \text{fst}, p, 1 \rangle, \langle \text{snd}, p, 0 \rangle \}$$

$$\Delta \simeq (I, T) = \{ \langle g, k \rangle, \langle \text{decrypt}, \langle e, k \rangle, 1 \rangle \}$$

we had to create value for $\langle \text{decrypt}, \langle e, k \rangle \rangle$
Interpretations in $S\sim$ and $T\sim$: $f_{S\sim} = f_{T\sim} = e$

$$\Delta_{\sim}(I, S) = \{\langle g, k \rangle, \langle \text{decrypt}, \langle e, k \rangle, p \rangle, \langle \text{fst}, p, 1 \rangle, \langle \text{snd}, p, 0 \rangle\}$$

$$\Delta_{\sim}(I, T) = \{\langle g, k \rangle, \langle \text{decrypt}, \langle e, k \rangle, 1 \rangle\}$$

we had to create value for $\langle \text{decrypt}, \langle e, k \rangle \rangle$

its existence before interaction would have violated isomorphism!
Example Continued: Abstraction by Similarity
Example Continued: Abstraction by Similarity

\(S \) has \(\{1, 0\}_K \), \(T \) has \(\{1\}_K \), and they both learn \(K \).
Example Continued: Abstraction by Similarity

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K

Vocabulary $\Upsilon = \{f, g, \text{decrypt}, \text{left}, \text{right}, \ldots \}$
Example Continued: Abstraction by Similarity

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K

Vocabulary $\mathcal{Y} = \{f, g, \text{decrypt, left, right, \ldots }\}$

Base set $|S| = |T| = \{0, 1, e, k, p, \ldots \}$
Example Continued: Abstraction by Similarity

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K

Vocabulary $\mathcal{Y} = \{f, g, decrypt, left, right, \ldots \}$

Base set $|S_\sim| = |T_\sim| = \{0, 1, e, k, p, \ldots \}$
Example Continued: Abstraction by Similarity

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K

Vocabulary $\Upsilon = \{f, g, \text{decrypt}, \text{left}, \text{right}, \ldots \}$

Base set $|S_\sim| = |T_\sim| = \{0, 1, e, k, p, \ldots \}$

Interpretations in S_\sim: $f_S_\sim = e$,
Example Continued: Abstraction by Similarity

S has $\{1, 0\}_K$, T has $\{1\}_K$, and they both learn K

Vocabulary $\Upsilon = \{f, g, \text{decrypt, left, right, \ldots }\}$

Base set $|S\sim| = |T\sim| = \{0, 1, e, k, p, \ldots \}$

Interpretations in $S\sim$: $f_{S\sim} = e$, $\text{decrypt}_{S\sim}(k, e) = p$, $\text{fst}_{S\sim}(p) = 1$, $\text{snd}_{S\sim}(p) = 0$
Example Continued: Abstraction by Similarity

\(S\) has \(\{1, 0\}_K\), \(T\) has \(\{1\}_K\), and they both learn \(K\)

Vocabulary \(\mathcal{Y} = \{f, g, \text{decrypt, left, right, } \ldots \}\)

Base set \(|S_\sim| = |T_\sim| = \{0, 1, e, k, p, \ldots \}\)

Interpretations in \(S_\sim\): \(f_{S_\sim} = e\), \(\text{decrypt}_{S_\sim}(k, e) = p\), \(\text{fst}_{S_\sim}(p) = 1\), \(\text{snd}_{S_\sim}(p) = 0\)

Interpretations in \(T_\sim\): \(f_{S_\sim} = e\), \(\text{decrypt}_{S_\sim}(k, e) = 1\)
What we have learned is, in both cases,

\[\Delta_\sim(I, S) = \Delta_\sim(I, T) = \{(g, k)\} \]
What we have learned is, in both cases,

$$\Delta_{\sim}(I, S) = \Delta_{\sim}(I, T) = \{(g, k)\}$$
What we have learned is, in both cases,

\[\Delta(\tilde{I}, S) = \Delta(\tilde{I}, T) = \{(g, k)\} \]

We did not have to create differences, we *discovered* them.
Abstraction by Similarity

- Soundness follows directly adapting Abadi-Rogaway 2000.

\[R(S') \sim R(T) \implies S \approx T \]

\[S \approx T \implies R(S') \sim R(T) \]

- Proof-porting . . .