TUFFTRIDE® TF 1 - Process

What is Nitrocarburizing?

A thermochemical treatment which enriches the surface of ferrous materials primarily with nitrogen and, at the same time with small amount of carbon.

TUFFTRIDE[®] QPQ

improves

- wear resistance
- orrosion resistance
- **o** fatigue strength
- appearance

and is a

- economical
- environmentally friendly
- o multi-purpose

process

TUFFTRIDE® TF 1 - Process

Media for Nitrocarburizing

TUFFTRIDE® TENIFER®

Medium

Molten salt consisting of alkali cyanate and alkali carbonate

Basic Reaction in the Molten Salt

TUFFTRIDE® TENIFER®

Structure of a TUFFTRIDE[®] treated surface

Compound Layer (CL)

- on the surface of a work piece
- **O** consists of ε iron nitride

(in the case of alloyed steels, also of special nitrides)

Diffusion Layer (DL)

- area below the compound layer
- nitrogen is solved atomically in the iron lattice (with unalloyed steels and slow cooling also in the form of iron nitride needles)

TUFFTRIDE® Process

Systematic Structure of the Compound Layer

MELONITE[®] TENIFER[®]

Compound Layer

TUFFTRIDE® TENIFER®

Effects of Composition of Material

An increasing content of alloying elements with constant treatment parameters causes:

- **O** Decrease in thickness of the compound layer
- Decrease in total nitration depth
- Increase in surface hardness

Influence of various materials on the thickness of the compound layer

Obtainable compound layer thickness in relation to the treating time

Total nitriding depth of various steels in relation to the treating time

TUFFTRIDE® Process

Surface hardness and case depth in relation to the chrome content

TUFFTRIDE® - Process

Treating Cycle

- Preheating on air (350 400°C)
- Nitrocarburizing in a TUFFTRIDE TF1 bath (usually at 580°C)
- Cooling
- Cleaning in a heated and agitated rinsing cascade
- (Short immersion in dewatering fluid)

Preheating

 Reason Only completely dry components should be put into the bath ! Temperature in TF 1 bath should not drop below 1000°F (540°C) or the formation of the compound layer will be negatively impacted. 				
Influencing Factors Temperature (normally 660-750°F) (350-400°C) 				
O Duration	(usually 30-90 minutes, min. 30 minutes)			
Important!				
Too high a temperature, or too long a time, can lead to scaling.				
(\Rightarrow Poorer nitriding quality, high sludge formation)				

Influencing Factors in Bath Performance

0	Temperature	
0	Treating time	
0	Bath chemistry	
	CNO-	35-38%
	CN ⁻	\leq 5%
	Fe	≤ 0.02%
•	Aeration	

Influence of treatment time on the compound layer

Highly flexible because

- components requiring various treating times can be treated together in the salt bath
- various materials can be nitrocarburized in one charge
- the treating / processing time is very short
- the plants are of modular design so that fluctuations in throughput can be accommodated
- cooling mediums with different cooling rates (water, AB1 bath, forced air, nitrogen or vacuum) can be used
- O TUFFTRIDE treatment is possible within a temperature range of 480°C 630°C

Bath Chemistry

CN⁻ Content (\leq 5%)

- Dependent on throughput and sludge content
- Too much reduces the lifetime of the pot and affects the regeneration reaction
- Is influenced by the aeration

TUFFTRIDE[®] Process

Regenerating with REG1

- 1. Determine the required amount of regenerator from tables in the operating instructions
- 2. Measure exactly the amount of regenerator required to 100 g
- 3. Using a shovel, carefully add the regenerator in small portions to the aerated bath

Bath Chemistry

CNO⁻ Content (35-38%)

- Maintained through addition of REG 1
- Too much causes thick compound layers with too much porosity
 - $(\Rightarrow$ Lowering of wear and corrosion resistance)
- Too little reduces nitriding activity and leads to thinner compound layers

 $(\Rightarrow$ Lowering of wear and corrosion resistance)

TUFFTRIDE® - Process

Influence of Sludge Content on the Compound Layer

TUFFTRIDE® - Process

Cooling Media

TUFFTRIDE[®] Process

90' TF1 (580°C) ☑ SW

90' TF1 (580°C) ☑ 10' AB1 (350 °C) ☑ SW

Formation of the diffusion layer at different cooling rates Material: 1015

TUFFTRIDE[®] - Process

Advantages of an AB1 Bath

Oxidation in AB1

Medium

Molten salt consisting of alkali nitrate, alkali hydroxide and alkali carbonate

Basic Reactions in the Molten Salt

Influencing Factors in AB 1[®] Bath

Influencing Factors in AB 1[®] Bath

AB 1 Bath

Warning signs that something is wrong !

- **O** Bath is not liquid at 750°F (400°C).
- No foaming, no reaction when load is brought in.
- **O** (Brown-coloured salt melt)

Influencing Factors in the Quenching Tank

Diagram of a TUFFTRIDE[®] - plant

TUFFTRIDE® - Process

Rinsing technology	Amount of waste water		
	%	litres	
Rinsing tank	100	2000	
2 rinsing tanks	20	400	
2-step washing cascade	2.25	45	
3- step washing cascade	0.65	13	
4- step washing cascade	0.33	6.5	
- step washing cascade	0.55	0.5	

Requirement of Washing Water for Different Rinsing Techniques

Source: Dr. Rolf Stiefel

Institute for Industrial Hydroeconomy and Aircleaning, Cologne

Influencing Factors in the Rinse Cascade

Improves the cleaning effectiveness

