The economy of scale is stimulating ever bigger ships. Within the Proceedings of 7th International Conference on Hydroelasticity in Marine Technology, there is e.g. paper titled Fatigue analysis of HHI SkyBench™ 19000 TEU Ultra Large Container Ship with springing effect included. Strength aspects of this 400-meter big ship are analysed. One may also wonder about further development and increase of the container carrier, and what might be the next size and capacity reached. Furthermore the assumed increased beam draught ratio, exceeding $B/T = 4$, affects overall seaworthiness of a ship. Accordingly a reasonable measure should be maintained whether dealing with a ULCC of 500 000 dwt and more, or a cruiser with several thousands passengers on board, particularly in view of high profile accidents. Safety issues remain the main focus.

In the last 20 years an increasing emphasis on the environment and green issues has been directed. The Energy Efficiency Design Index (EEDI) has the potential to influence the design of future vessels by placing a greater emphasis on reducing vessel emissions. Wind being the most economical and environmentally sound source of energy on high seas nowadays attracts attention. Presently the towing kite sail, installed on vessel’s bow, is offering practical and reliable solution. Depending on the prevailing wind condition, a ship’s average annual fuel cost can be reduced by 10 to 35% by using the kite sail system. With regard to classification society regulations, the kite sail system is categorized and treated as an auxiliary propulsion.

It is reasonable to expect a wider application of auxiliary wind propulsion. The thought about its further development hopefully associate to a fruitful cooperation and alliance between hydroelasticity and aeroelasticity.