GUIDE FOR THE PREPARATION OF SCIENTIFIC PAPERS FOR PUBLICATION

Second Edition

General Information Programme and UNISIST
United Nations Educational, Scientific and Cultural Organization

Paris, May 1983
PGI-83/WS/10
Paris, May 1983

GUIDE FOR THE PREPARATION OF
SCIENTIFIC PAPERS FOR PUBLICATION

second edition

revised and updated by
Anders Martinsson

General Information Programme and UNISIST

United Nations Educational,
Scientific and Cultural Organization
This document is the photographic reproduction of the author's text

Recommended catalogue entry

First edition Paris : Unesco, 1968 (SC/MD/5)

I - Anders Martinsson
II - Unesco - General Information Programme and UNISIST

© Unesco 1983
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 Preamble</td>
<td>2</td>
</tr>
<tr>
<td>2 Categories of papers</td>
<td>2</td>
</tr>
<tr>
<td>3 Rule against duplicate publication</td>
<td>3</td>
</tr>
<tr>
<td>4 Component parts of the manuscript</td>
<td>3</td>
</tr>
<tr>
<td>5 Style of presentation</td>
<td>4</td>
</tr>
<tr>
<td>6 Citations and references</td>
<td>5</td>
</tr>
<tr>
<td>7 Biblid (Bibliographical identification)</td>
<td>6</td>
</tr>
<tr>
<td>8 Preparation of authors' abstract</td>
<td>7</td>
</tr>
<tr>
<td>9 Terminology and nomenclature</td>
<td>8</td>
</tr>
<tr>
<td>10 Preparation of tables</td>
<td>9</td>
</tr>
<tr>
<td>11 Preparation of illustrations</td>
<td>9</td>
</tr>
<tr>
<td>12 Physical form of submission</td>
<td>10</td>
</tr>
<tr>
<td>13 Additional recommendations to editors</td>
<td>11</td>
</tr>
<tr>
<td>14 Standards concerning scientific publications</td>
<td>12</td>
</tr>
<tr>
<td>15 List of abbreviations</td>
<td>13</td>
</tr>
</tbody>
</table>
INTRODUCTION

In 1962 Unesco published the Code of good practice for scientific publications (document UNESCO/NS/177), prepared by the FTD-ICSU-IPLA-ISO-Unesco Liaison Committee. This Committee had been set up to study ways and means of devising effective international measures to improve the present position as regards scientific information. The Committee considered that the lack of a freely accepted discipline in drafting and publishing scientific information was one of the main causes of the tendency to add unnecessarily to the volume of documents published and to the expenditure involved in primary publishing and in the subsequent handling of the publications in indexing and abstracting services and in the libraries. The Committee, therefore, undertook to specify in the Code, in as concise a form as possible, the rules which should obviously be followed by all authors of scientific publications as well as all editors of scientific serial publications. The Code was widely circulated by Unesco and the ICSU Abstracting Board in English, French, Russian and Spanish, and versions in Esperanto, German, Polish and Portuguese were also published.

In 1968 the Code was succeeded by the Guide for the preparation of scientific papers for publication. It took into account all the suggestions and comments received in respect of the Code and in particular an extensive study of the Code and the appended "Guide for the preparation and publication of synopses" (a term used at that time for the author-prepared abstract), contributed by the International Union of Pure and Applied Physics (IUPAP). In principle, all essential elements contained in the Code were retained in the Guide, and only a small number of additions and slight changes were made in the rules presented. However, as shown in retrospect, the extraordinary usefulness and impact of this document was largely due to the fact that the rules were supplemented by "a number of comments, details and minor suggestions", generally of an explanatory character and given in italics in a separate column so as to facilitate consultation of the text.

In the present edition of the Guide, the approach of an "explanatory standard" is retained and developed. The new edition also reflects developments in the world of scientific publishing which have taken place since 1968, largely within the Unesco-sponsored editors' associations federated in IFSEA. In the first place, scientific editing has become more professional, with the result that the presentation of scientific publications is becoming more producer- and user-oriented than when guided by librarians and documentalists, with increased emphasis on the ergonomics, economics and developing techniques on the production side, with the reader's working habits much in mind and of course with retained attention to the needs of the auxiliary services. In the second place, developing techniques with "word" and text processors have effaced the formerly distinct border-line between manuscript and typographical production. The present Guide deals with the technical preparation of a manuscript for professional typesetting, not with the author's in-house techniques at different levels of sophistication for producing a camera-ready typescript for reproduction in the more or less "grey" literature. The basic rules should be the same, however.

Good preparation of manuscripts and illustrations reduces publication cost most drastically. Appropriately prepared publications reduce the enormous expenditure incurred by the scientific libraries and documentation centres of all countries. Besides the editorial quality control of the substance in scientific manuscripts, ergonomic and economic presentation contributes greatly to reduce the costs for publication and the reader's searching and reading time.
1 PREAMBLE

The essential aim of a scientific (scholarly) paper is to communicate the
results of research, ideas and discussion clearly, concisely and honestly.
Authors and editors must keep this aim paramount. Most of the recommenda-
tions in this guide are directed towards this goal.

Publishing is one of the inherent methods of scientific work. Well-developed
strategies of publication and educated adherence to good practice and standards
are needed to facilitate the exchange between scientists in all countries and
to make the increase in the volume of publications manageable.

2 CATEGORIES OF PAPERS

2.1 Original scientific papers, reporting on results, describing methods,
techniques and apparatus, presenting new ideas, etc.

This is the main category of primary contributions to series. Apart
from full articles and monographic papers, preliminary notes and
subsequent discussion in note form play a role in primary publishing.

A text is regarded as belonging to the category "original publication"
when it constitutes a significant extension of knowledge or under-
standing and is written in such a way that a qualified research worker
is able to repeat the author's experiments, observations, calculations
or theoretical reasoning and judge his findings and accuracy of work.

2.2 Secondary publications and information services

These systems are generally managed by major commercial or governmental
agencies and deal with the abstracting and indexing of primary publica-
tions and with the storage and retrieval of information contained in
them. The scientific author is concerned with these systems in one
particular respect, namely providing author-generated abstracts and
sets of keywords.

2.3 Review articles

A review article is a survey of one particular subject area, in which
information already published is assembled, analysed and discussed.
The scope of the article will depend on the journal for which it is
intended. The review article is sometimes regarded as a secondary,
sometimes as a tertiary publication; in fact, creative compilers of
such reviews often supplement considerable quantities of primary
information.

It is the duty of the author of a review article to give credit to all
published work which has advanced the subject, or which would have
advanced it, had it not been overlooked.
3 RULE AGAINST DUPLICATE PUBLICATION

3.1 Manuscripts should not be submitted for publication if they have already been published or accepted for publication elsewhere. They should not be submitted for simultaneous consideration by more than one journal or other serial.

This rule is motivated by the overall economy of scientific information, by care about the efforts of editors and referees, and by copyright considerations. Exceptions may be made on agreement between authors and publication managements when publication is intended to take place in obviously separate language areas or republication is motivated by obvious unavailability of the paper.

Subsequent submissions of manuscripts should always be accompanied by a statement on previous treatment by editors or referees.

4 COMPONENT PARTS OF THE MANUSCRIPT

4.1 The title should be concise and should aim at drawing the reader's attention to the main contents of the article. It should not be overloaded with information in abbreviations, parentheses, formulae or characters foreign to the language used in the journal.

The crowding of indicative elements in the title and the addition of a subtitle are no longer necessary since these functions have been taken over by the abstract and the line of keywords.

4.2 The abstract is an extended title, consisting of connected sentences. All articles should be provided with an abstract for the benefit of both the readers and the secondary information services (for details, see item 8.1 ff. below).

Detailed information for the writing of abstracts is given in a special section below. The arrangements in the article-head of the title, abstract and keywords are explained. Other elements in the article-head are the article bibliid and the identification (address, etc.) of the author.

4.3 A line of keywords following the abstract greatly facilitates the indexing of the article by the secondary services.

Moreover, the line of keywords relieves the abstract of its load of indicative elements in favour of a more informative approach. Keywords can either be free or in accordance with a controlled vocabulary, depending on the practices of different journals.
4.4 The main text should be well integrated but divided into sections by informative headings. Avoid foot-notes and the unnecessary separation of text portions as annexes or appendices.

Note systems considerably increase the costs for making up the pages and conflict with the ergonomics of reading.

The present guide is not intended as a complete style manual for scientific manuscripts. Consult carefully (and critically) the "Instructions to authors" provided by the individualserials and the style manuals published for different subject areas.

4.5 A summary in the same language as the article or in translation into an internationally more wide-spread language facilitates the accessibility of the article.

As distinct from the abstract, the summary may vary considerably in length depending on the length of the article and is free of many of stylistic restraints on the abstracts. The summary may be combined with conclusions and contain additional information in the form of graphic syntheses, wider aspects of the subject area, etc.

4.6 The reference list should be prepared with particular care, element by element and with attention to the details of punctuation, in accordance with the instructions for authors of the individual publications.

Reference lists tend to become a disproportional item in scientific editing, and it is tragic when occasionally this item requires more editorial effort than the scientific substance of the article.

5 STYLE OF PRESENTATION

5.1 The introduction should explain the aim of the paper.

If a historical or critical review of existing knowledge is included in a primary research paper, it should be confined to the immediate subject of the paper. More comprehensive reviews should be published separately as such.

5.2 Material should be presented as concisely as possible in simple, straight-forward language. Terminology and nomenclature form an integral part of scientific language but should be used critically and parsimoniously (cf. item 9.1 below). Authors should try to make their papers reasonably self-contained by including adequate explanation and identification of abbreviations and symbols used.

Authors should not use excessive non-standard abbreviations, especially of infrequently used words, since this makes papers very hard to read. Even nationally standardized or recognized abbreviations are remarkably difficult for readers representing other languages to understand.
5.3 Authors should make clear which parts of the paper represent their contribution and what represents the work of others. They should be very careful to specify in the text the limitations of their work—the range of validity of their conclusions, the sources of error and probable errors of the data presented. They should not make over-optimistic claims for the precision of their work, the generality of their conclusions, or the applicability of their results. They should avoid arguments ad hominem in criticizing other related work—criticisms should be directed only at the scientific aspects of the related work.

5.4 Should industrial or national security considerations lead to significant restriction of the amount of scientific information which can be published in the article, this should be indicated in the paper which then often assumes the character of a "preliminary publication". When the paper is published in a synoptical manner and the primary data are deposited in a centre for general availability, this should be indicated.

5.5 Most serials, particularly periodicals, have their own "Instructions to authors", giving details of presentation to be followed. They normally cover general layout, form of bibliographical reference, requirements on tables and illustrations, etc. Such instructions are up to date with the modern development of publications to varying degrees but must be followed in any case for the quick processing of manuscripts.

Study of the format and style of similar papers on related topics in the journal to which a paper is to be submitted may be a valuable guide to proper form and content. Experienced authors with competent insight into the technical and stylistic development of scientific publishing should not hesitate to seek agreement on modernization of the "Instructions to authors".

6 CITATIONS AND REFERENCES

6.1 Explicit bibliographical reference should be made to previous work published on the same subject where this is necessary to show how the new results and material advance the knowledge of the subject. By such reference due acknowledgement should also be made to work leading up to the new contribution in question.

References should be brought up to date with the time of submission of the manuscript, which should be stated, e.g., in connection with the identification of the author.

6.2 References should, in general, be made only to published material, and all relevant sources in this category should, in principle, be covered. Reference should also be made to material accepted for publication or publicly deposited, as far as used by the author. Reference to private communications and documents with limited circulation (i.e. not universally available) should be avoided whenever possible.
There is no question of prohibiting allusion to conversations or private communication, but it is certainly not justified to make a statement or advance a theory based on a mere conversation which has not been checked.

6.3 Reference is made by the briefest possible citation in the text, corresponding to a full reference in the reference list at the end of the paper. A citation in the text may consist of the name of the author(s) and the year of publication, corresponding to an entry beginning with the same elements in the reference list, arranged in alphabetical order (and chronologically, if reference is made to more papers by the same author).

This system is the most ergonomic one for both the author and the reader. Due to the mnemonic element in the author-year citation, frequent consultation of the reference list can be avoided.

Other systems linger in the scientific literature, from foot-note references (to be avoided entirely as non-economic and non-ergonomic), end-note references and numbered citations corresponding to non-alphabetical or alphabetical reference lists. All these systems require two-place reading.

7 BIBLID (BIBLIOGRAPHICAL IDENTIFICATION)

7.1 In order to ascertain that every component part of a serial publication (volume, issue, article, page, etc.) can be identified for correct citation and reference, it should be provided with a combination of bibliographical elements standardized under the name of bibli (see ISO 30 in the appended list of standards). Particularly the article bibli is essential for the flow of references through the scientific (scholarly) literature.

In addition to the last-mentioned function, a main idea of the bibli is that identification should automatically accompany an offprint article or copied minor component (page, facing pages, abstract, etc.) of a publication.

8 PREPARATION OF AUTHOR'S ABSTRACT

8.1 With the increasing amount of published scientific material, it has become essential that the basic content of all papers is made easily available in a concise form. This can be done by ensuring that titles are adequate and supplemented by an abstract at the beginning of every article. In writing abstracts authors should bear in mind that these may be the only parts of the papers that are read by the majority of readers.

The purpose of an abstract is twofold:

(a) To provide the selective reader, both the specialist on the subject and the scientist reading ("browsing") for his broader orientation with sufficient information to enable him to decide whether he wants to involve himself deeper in the text.
(b) To expedite the work of the abstracting services by making it possible for them to reproduce immediately the author's abstract. A well-formulated abstract, related to an appropriate title and a set of keywords, is of great assistance in the general improvement of information services in science.

A considerable advantage of author-generated abstracts (formerly also called synopses) over the products of secondary abstractors is that the author's specialist knowledge can be used to select and emphasize the essentials of the paper.

8.2 The place and length of the abstract is determined by its character of a supplement to the title in connected sentences. Hence it should be placed between the title and the main text and (like the title) vary within fairly narrow limits; depending on type size a maximum of 200 to 250 words is generally recommended (consult the respective serials' Instructions to authors).

Since the abstract (or the title) is not an unweighted "summary" or "condensate" of the paper, it should not be considerably extended to correspond with long texts; instead, it should be made increasingly selective and indicative.

There is a general aim that the abstract (plus preferably the article bibliog) in its final printed form should be directly reproducible or mountable as copy on, e.g., 75x125 mm library cards of the corresponding size of special abstract sheets (this size is, in spite of its still informal status, one of the most widely accepted standards in information; the corresponding abstract format and reproduction on sheets ready for mounting were originally recommended by the International Conference on Science Abstracting).

8.3 Contents: The abstract should contain the results and conclusions of the paper in brief detail adjusted to the size allotted to the abstract and should, within these limits, refer to any new information which it contains. The abstract should not contain information or claims not contained in the body of the paper, nor should it include inessential details.

Most standards and instructions distinguish between informative (specifying individual results; data directly interesting to the reader) and indicative abstracts (giving the results by classificational category, i.e. the data directly useful for indexing), and recognize mixed approaches. These distinctions tend to become historical in practice: sets of keywords relieve the abstract from excessive indicative burdens; abstracts of longer contributions automatically become more indicative in their approach.

8.4 The abstract should be self-contained but may intercorrespond with the title.
Reasons: Only the abstract, together with the title, is reproduced by the secondary services; hence "naked" text citations or references to figures should be avoided (neither references nor illustrations accompany the abstract). For similar reasons, the text should not be in the first person (which is otherwise fully permitted and recommendable in modern scientific style; in the reproduced abstract, however, it is no longer the author who speaks).

8.5 It is valuable to indicate the treatment of various aspects of the subject by qualifiers such as "brief", "exhaustive", "theoretical", "experimental", etc.

8.6 New information should include observed facts, conclusions of an experiment or argument, the essentials of new methods or apparatus, etc. Reference should be made to new material (compounds, etc.) and new data, numerical or verbal.

8.7 Avoiding abbreviations, symbols, etc., is even more imperative in the abstract than in the body of the paper.

The self-contained nature of the abstract makes it impossible to explain abbreviations and symbols beyond the abstract space.

8.8 Avoid graphic formulae, symbols and foreign characters in both abstracts and titles.

The storage and outprint devices of automated secondary services have generally no capacity beyond the simple Latin character set (English and, at best, the diacritics used in the main Romance languages).

8.9 It is recommended that abstracts be published in at least one of the more widely used scientific languages, no matter what the original language of the paper, in order to facilitate their international usefulness.

9 TERMINOLOGY AND NOMENCLATURE

9.1 New terminology and nomenclature should be accompanied by an explanation of the derivation and construction of the term or name in question. New terms should be introduced only for phenomena frequently referred to, impossible to refer to by short commonplace expressions. Terms should be constructed with due consideration of etymology, semantic content and mnemonic qualities.

Accounting for the construction of a term or name is also an act of self-discipline - introduction of a new word is an innovation sufficiently qualified to motivate such treatment. Do not unnecessarily designate commonplace words as terms - this restricts the flexibility of non-terminological language.
10 PREPARATION OF TABLES

10.1 Details of the preparation of tables are beyond the scope of this guide and often specific for each field of science. It should be noted, however, that tables in modern typography are constructed without vertical lines. Tables with drawn graphical elements other than normal characters and horizontal lines (irregular lines, unusual formulae and symbols, etc.) should preferably be drawn for reproduction as "figures". Each table should be provided with an explanatory caption rather than merely a title or reference to an explanation in the main text.

The fact that modern text processor and corresponding "type-setting" devices enable us to reintroduce the vertical lines used in the days of typographical craftsmanship does not change the fact that vertical lines are out of style and are particularly non-ergonomic in the normal typing of manuscripts.

11 PREPARATION OF ILLUSTRATIONS

11.1 Plan all illustrations so that they take up either the entire width of the type area or the width of one column. If an intermediate width is used, plan it to leave enough space for the caption beside the figure within the type area.

The cost of reproducing an illustration is based on the smallest rectangular frame within which the figure can be accommodated. Do not leave open corners or unnecessary space between the items of composite figures.

11.2 Line drawings should have lines of even thickness and blackening. For tones, do not use drawn or adhesive screens with too dense patterns. Break crossing lines particularly when they interfere with text elements in the figure.

Excessively dense screens, angles between crossing lines, and areas congested with details tend to be filled with black with all common reproduction methods, particularly when reduced. Unevenness and other imperfections of the lines tend to become more pronounced.

11.3 Photographs for half-tone illustrations should be printed on white paper with glossy finish. They must be clear and well contrasted, but without pronounced white areas or very heavy shadows. If incident light is used for laboratory photographs, the light should fall consistently from the upper left. In a composite figure, all items should be of similar tone and contrast. Composite figures should consist of rectangular units as far as possible. Mount the photographs on pieces of cardboard, preferably of the same size as the typescript sheets. Avoid arrangements that require blocking-out; they are expensive and leave the outline of the objects to the judgement of the printing-house technicians.

11.4 For text in all kinds of illustrations, use stencil or adhesive lettering, not usual typescript. Use special care for correct spacing and alignment of the letters. Simple letters of sanserif type are recommended for distinct reproduction.
Inexpensive devices (about the cost of a typewriter) for automatic spacing and alignment of illustration texts on adhesive tapes are now available, but as yet little discovered by scientific authors.

11.5 Number illustrations consecutively with arabic numerals as *figures* (even if they occupy a full page) if they are printed on normal pages. Number them consecutively as *plates* if reproduced by special methods and on special paper, and do not paginate the plates.

11.6 All illustrations should be provided with explanatory captions, not merely with titles or references to explanations in the text. Write the explanation of symbols next to the example of the symbols in the legend, not merely with a number explained in the caption.

Illustrations without a caption necessitate at least two-place reading, often connected with some search in the main text. Explanations of legends via a numeral enforce three-place or even four-place reading.

12 PHYSICAL FORM OF SUBMISSION

12.1 The main text (with abstract and references), captions, tables and figures should be submitted as separate items. Do not mount figure originals, captions or real (numbered) tables in their intended place in the main text.

This is motivated by the routines for making up the pages with all "professional" printing methods. Dismembering and reassembling mounted manuscripts and illustration originals is the editor's most tedious and frustrating work. Only camera-ready typescript pages (half-tones still excluded) are an exception to this rule.

12.2 All text should be amply spaced and with an ample left-hand margin. The position of the figures and tables should be indicated in the margin (or in the margin of the galley proofs, if read by the author).

Ample space between the lines is necessary for the introduction of changes, some of the instructions to the compositor, etc. Note that the compositor's routines (full key-boarding) require the changes at their proper place, in contrast to proof-reading, where the places to be changed are found by marks with changes in the margin, corresponding to a textual mark in the nearby line.

12.3 All text and figures have to be definite, with correct spelling and language and carefully read for consistency in all detail. Illustration originals should be identified at least with the author's name and their number as referred to in the text.
Careless preparation of manuscripts wastes the time of editors (i.e., largely fellow scientists' research time), referees and (if published) readers, and tends to create bias against the scientific validity of the work being reported.

Authors who write papers in a language in which they are not completely fluent should make every effort, by consultation with colleagues who are fluent in the language, to present the work in an acceptable form. It is unfair to expect editors or referees to undertake the task of re-writing a paper to correct inadequacies of language.

13 ADDITIONAL RECOMMENDATIONS TO EDITORS

13.1 The editor is the author's arm in scientific publishing. His task is to amalgamate scientific substance and modern means of expression into a publication and channel information from author to reader in an efficient and strategic way. This is an inherent methodology of science which justifies the scientist's acquisition of considerable professionalism in the field.

13.2 Editors are asked to ensure that each journal or other serial publication under their control has an expressly declared programme or profile and to keep to this structure in channelling the right information to the right reader.

13.3 Editors are also asked to ensure that each serial publication under their control is provided with instructions to authors, which are kept up to date with modern standards and do not contravene the basic principles set out in this document.

13.4 Editors should be particularly careful to ensure that all contributions contain the standard mechanisms enhancing the flow and precision of scientific information through the primary literature and availability services, namely biblids, abstracts and correct citation/reference systems. It should be clearly stated in the journal that reproduction of authors' abstracts is authorized.

13.5 Editors should supplement their own expert evaluation of manuscripts with the advice of referees for topics beyond their specialization.

Refereeing of article-size manuscripts is an established exchange of services between scientists. The number of referees for different manuscripts may be flexible, depending on the editor's need for support.

13.6 As the editor's work is largely an extension of the author's, the editor is the author's natural teacher in the methods and methodology of publishing. Organized teaching at the universities relieves editors of much of the repetitive individual guidance of authors.
14 STANDARDS CONCERNING SCIENTIFIC PUBLICATIONS

A number of international (ISO) standards concern scientific publications, mainly as viewed by librarians and documentalists. In many countries corresponding national standards exist. Standards proper are supplemented by important standard-like documents (guides and handbooks for authors and editors, etc.), most of them written for a defined scientific field. The following list is restricted to ISO standards, already available or in different stages of elaboration (DIS: draft international standard; DP: draft proposal; an asterisk marks a standard under revision; R indicates an ISO "Recommendation" according to older terminology):

ISO 4* (1972) International code for the abbreviation of titles of periodicals
ISO 8 (1977) Presentation of periodicals
ISO 9* (1968) International system for the transliteration of Slavic Cyrillic characters
ISO DIS 18 (1980) Short contents lists of periodicals and other documents
ISO DP 30 (1982) Bibliographic identification (biblid) of serials

[ISO 31 comprises 13 separate documents (as of 1982) for quantities, units and symbols of special fields.]

ISO 214 (1976) Abstracts for publication and documentation
ISO R 215* (1961) Presentation of contributions to periodicals
ISO DIS 233 (1975) International system for the transliteration of Arabic characters into Latin characters
ISO DIS 259 (1975) Transliteration of Hebrew characters into Latin characters
ISO DP 690 (1980) Bibliographic references to monographs and serials, and to contributions in monographs and serials

[ISO 710 comprises three separate documents (as of 1982) for graphical symbols on detailed maps, plans and geological cross-sections.]

ISO 832 (1975) Bibliographical references: Abbreviations of typical words
ISO R 843* (1968) International system for the transliteration of Greek characters into Latin characters
ISO 999 (1975) Index of a publication
ISO 1000 (1973) SI units and recommendations for the use of their multiples and of certain other units
ISO 1086 (1975) Title-leaves of a book
ISO 2014 (1978) Writing calendar dates in all-numeric form
ISO 2384 (1977) Presentation of translations

ISO DIS 2805 (1974) Transliteration of the alphabets of non-Slavic languages using Cyrillic characters

ISO 3297 (1975) International standard serial numbering (ISSN)

ISO DIS 3602 (1975) Romanization of Japanese

ISO 5122 (1979) Abstract sheets in serial publications

ISO DIS 5966 (1978) Presentation of scientific and technical reports

ISO DP 6357 (1981) Spine titles on books and other publications

The above standards have been published in "ISO Standard Handbook 1: Information transfer; 2nd edition, Geneva, 1982". These standards are available from ISO, 1 rue de Varembé, CH-1211 Geneva 20, Switzerland, or from the corresponding National Standards Organizations of the member countries of ISO (documents designated DP and DIS are not public; available but are expected to become adopted as standards during the life-time of the present document.)

A generous selection of references to national standards and of standard-like documents (largely international) is included in the UNISIST Guide to standards for information handling (1980), available from the Section for the Promotion of Methods, Norms and Standards of the Division of the General Information Programme of Unesco, 7 place de Fontenoy, F-75700 Paris, France.

15 LIST OF ABBREVIATIONS

FID : International Federation for Documentation

ICSU : International Council of Scientific Unions

IFLA : International Federation of Library Associations and Institutions

IFSEA : International Federation of Scientific Editors' Associations

ISO : International Organization for Standardization