OD EUPOKSOVE TEORIJE
(NEČIKLORIJNIH) OHJERA (-4. st.) DO MODERNIH TEORIJA REALNIH
BROJARVA (10.-20. st.)
EUKSOVA TEORIJA IRACIONALNIH OMJERA (4. M.) V. V. EUKL. EL. (oko 300)

DEFINICIJA JEDNAKOSTI 2 OMJERA:

\[a : b = A : B := \]
\[(\forall m, n)(ma \geq mb \iff mA \geq nB) \]

!!! BEZ POUZDA NA ZAJEDNOCJU JEDINICU !!!

\[a : b > A : B := \]
\[(\exists m, n)(ma \geq mb + mA < nB) \]

DAKLE, OMJERI SU DEFINIRANI I ZA NESUVRŠETNE VELIČINE WWW
TIPIČNA PRIMJENA:

\[\frac{ABC}{ABD} = \frac{BC}{BD} \]

DOKAZ ZA SUMJERJIVE:

\[\frac{ABC}{ABD} = 215 = \frac{BC}{BD} \]

DOKAZ ZA SVE (I NESUMJERJIVE):

\[BC_m := mBC \quad BD_m := mBD \]

\[\frac{ABC_m}{ABD_m} \iff BC_m \leq BD_m \]

\(\text{tj.} \)

\[mABC \leq mABD \iff mBC \leq mBD \]

\(\text{tj.} \) PO EUDOKSOVOJ DEFINICIJI!

\[\frac{ABC}{ABD} = \frac{BC}{BD} \]
JOŠ JEDAN PRIMJER (U STILU ARHIMEDA; -300.)

\[\frac{n^2}{r^2} = \frac{p}{r} = \frac{n}{r} \]

ARHIMED (-300.):

\[233:71 < \frac{p}{n} < 22:7 \]

ZNAČEĐE OVIH NEJEDNAKOSTI DANO JE EUKLIDSOLORI DEFIN.
Dezkind: \(\mathbb{R} \geq \mathbb{Q} \) \(\text{Ta}! \)

\[
\begin{align*}
\frac{a}{b} &\geq \frac{m}{m} \iff \frac{A}{B} \geq \frac{m}{m} \\
\frac{a}{b} &\in \frac{A}{B} \text{ Rade ist } \mathbb{R} = \mathbb{Q} \cup \mathbb{Q} \\
\{ \frac{m}{m} : \frac{m}{m} \leq \frac{a}{b} \} &\subseteq \{ \frac{m}{m} : \frac{m}{m} > \frac{a}{b} \} = \{ \frac{m}{m} : \frac{m}{m} > \frac{A}{B} \} \\
&= \{ \frac{m}{m} : \frac{m}{m} \leq \frac{A}{B} \} = \{ \frac{m}{m} : \frac{m}{m} > \frac{A}{B} \} \\
\end{align*}
\]
KOROLARI:

\[
\bigcup_{n=1}^{\infty} I_n = \bigcap_{n=1}^{\infty} I_n \\
\bigcap_{n=1}^{\infty} I_n = \emptyset
\]

(C) CANTOROV AKSIOM

\[(\forall x, y \in \mathbb{R})(\exists m \in \mathbb{N}) m \cdot x > y\]

(A) ARHIMEDEOV AKSIOM

(C) & (A) \iff \exists \text{máx}_X \in X_0 \forall a \in a_0 \Rightarrow \exists \text{inf}_X \in X

(-1) - 0000 \Rightarrow \exists \text{inf}_X
WEIERSTRASS 1865. PREDAZUM
(OBJAVIO KOSSAK 1872.)

\[R = \{ x : x = \frac{a}{2^n}, n \in \mathbb{Z} \} \]

+1, x, -1 \div JEONOST. DEFINICIJE
=, \leq VRLO KOMPUCIĆ. -11 -

USP. NAIVNU DEF:
\[R = \{ x : x \text{ DECIMALNI RAČUN} \} \]
=1 \leq JEONOST. DEFINICIĆ.
+1x1-1 \div KOMPUCIĆ.

\[\ldots M_0, M_1, M_2, M_3 \]
\[+ M_0, M_4, M_6, M_8 \ldots \]

KAKO POČETI??
CANTOR (1872) HEINE (1872)

\[\mathbb{R} := \{ x : x \text{ brojevni red u } \mathbb{Q} \} \]

Danas: Cauchyjev niz

\[x = a_1, a_2, a_3, \ldots \text{ takav da } \forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ takav da } (m, n > N) \Rightarrow |a_m - a_n| < \varepsilon \]

\[(a_i) = (b_i) := (a_i - b_i) \rightarrow 0 \]

\[(a_i) \xrightleftharpoons{\varepsilon} (b_i) := \left(a_i \xrightleftharpoons{\frac{1}{x}} b_i \right) \text{ itd.} \]

Teorem o potpunosti (tj. neprekidnosti)

"Cauchyjevi nizovi realnih br (\(\theta_i \in \mathbb{R} \)) opet su realni br."

Ponovi konstr. ne dajenižta novo.
CANTOR (1872) HEINE (1872)

\[R := \{ x : x \text{ brojevni red u } \mathbb{Q}^2 \} \]

DANAS: CAUCHYJEV NIŽOVI

\[x = a_1, a_2, a_3, \ldots \text{ takav da } \]

\[(\forall \exists n)(\forall m, m > n) \mid a_m - a_n \mid < e \]

\[(a_i) = (b_i) \equiv (a_i - b_i) \to 0 \]
\[(a_i) + \frac{1}{x} (b_i) := (a_i \pm \frac{1}{x} b_i) \text{ itd.} \]

TEOREM O POTPUNOSTI (TJ. NPREK.

"CAUCHYJEVI NIŽOVI REALNIH BR. \((a_i, b_i) \in \mathbb{R} \) OPET SU REALNI BR."

PONOVI KONSTR. NE DAJENIŠТА NOVO
Aksonatizacija od \mathbb{R} je

$\begin{align*}
a + b & \quad a \cdot b & \quad a < b \\
\text{Komut.} & \quad \text{Kom.} & \quad \text{Uskl.} \\
\text{Asocij.} & \quad \text{Asoc.} & \quad \text{S + i x}
\end{align*}$

O, INV. 1, INV.

$
\text{Distrib.}
$

Polje

$(a) \forall x, y \forall m \in \mathbb{R} \, \, m \cdot x > y$

(Potp.) nije moguće sustav proširiti tako da sva svojstva ostanu sačuvana

(Potp.) \iff (\subset)
HÖLDER (1901) H. CARTAN (1937)

ARSIONATIZACIJA (LINEARNIH) SUSTAVA VELOČINA:

\((V^+, +, 1, <, -)\) oduzimaju

\(+\) asocijativ.
\(-\) komutativ.
\(<\) lin. uskl. st. \(\Rightarrow\) skrativost

\(x < y \Rightarrow (\exists z) x + z = y\)
(jedinstvo sluč. \& skrat.)

LINEAR. UREA. POLU GRUPA

\(x \leq V^+ \Rightarrow x < x + x < x + x + x < \ldots\) \(t\). \(N \leq V^+\)

ARHIM. AKSIOM

\(\exists \min V \Rightarrow N = V\)

\(\forall x \in V^+ \Rightarrow N \leq V\)
STANDARDNO PROŠIRENJE LIN. POLUGRUPE V^+ DO GROPE V:

$((x, y) = (w, v) := x + v = y + w \text{ itd...})$

DAJE $V \cong \mathbb{Z}$, A UŽ:

ARHIMEDOV AKSIOM:

$V = \mathbb{Z}$ odm. $V \subseteq \mathbb{R}$

UŽ CANTOROV AKSIOM:

$V = \mathbb{Z}$ odm. $V = \mathbb{R}$

ZATO JE \mathbb{R} TAKO VAŽAN I SVE PRISUTAN !!!!
E. ARTIN

U AFINOJ 2-DIM GEDMETRIJI AKSIOMATIZIRANO SA:

A1: Postoji pr. kroz svake 2 točke

A2: Postoji paralela

A3: Postoje 3 točke koje ne leže na istom pravcu

Poženio definirati dilatacije

(HPA) 0 P O Q HPA Q
O FIKSIRA P + 0P
(TRAG ON 0)

O NOŽE IMATI

O FIKS.TOC.
(TRANSLACIJA)

1 FIKS.TOC.
(HOMOTETIJA)

(0 S 2 FIKS.TOČKE JE IDENT.)

AHT \{AP, \theta \in \mathbb{R} \} \exists P = Q

\[p \rightarrow q \]

GRUPA TRANSLACIJA

\[F := \{ \alpha \in T \mid C_{0,2,1} = \frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{112}{2} \} \]

TEOREM: F JESTIJELO
$A_4H(3G) \sigma_P = P + \sigma_Q = R$
(za rovn. P, Q, R)

Teorema: Tielo F koordinatnej Z_1 (početna) ravninu.

Teorema: Desargues' II

A4T

Desargues P
TEOREM: PAPUS

PLAVEN ⇒ ČUVLI

⇔ FJEPOJE MNOŽENJE KOMUTATIV. (HILBERT 1899)

HILBERT (1899):
OD POJA IR DO RAVNINE IR^2.

ARTIN, ... (OKO 1950):
OD AFINE RAVNINE DO TISELAF (POJA UŽ PAPUSA) I NATRAČG.